
Presorted
Standard

US Postage
PAID

St. Croix Press

Enhanced Flash 8 Video Features:

• New VP6 codec delivers higher quality video
at the same bit rate

• 8-bit alpha channel transparency enables
you to blend video with other elements

• Improved live video capabilities

VitalStream Complete
Toolset for Flash:

• MediaConsole®
• MediaOps™ SDK
• Flash Authentication
• Reporting Dashboard

Stay Ahead of the Competition With VitalStream
and the Enhanced Video Features in Flash 8

Call (800) 254-7554
Visit www.vitalstream.com

With over two years of experience in delivering much of today’s most popular media, VitalStream® is the
first and most experienced Flash™ video streaming service provider.

© 2000 - 2005 VitalStream, Inc. All rights reserved.

Take Advantage of the Enhanced Video Features in Macromedia Flash 8
Call (800) 254-7554 or Download Tutorials at www.vitalstream.com/go/mxdj

Integrate Streaming Media
Into Your Flash Projects

december 2005

36 Programmer’s Guide to
Fireworks Commands
Getting started with your
first command
by dustin dupree

11 • 2005� • mxdj.com

18 Flash Animation
Learning Guide
Part 2
by jen dehaan & chris georgenes

40 Validation of Using
DOA, DG, and VO
ColdFusion development
by scott barnes

7 Designing with CSS
Understanding CSS
Design Concepts
by adrian senior

28 Using Bitmap Caching in Flash
Developers and designers use Flash to
do a lot more than just animation
by guy watson

34 Flash Is Your Friend
in Web 2.0
High order bit
by kevin lynch

42 Using Captivate to
Retouch Images
Recorded demos and simulations
by mark fletcher

48 Using the Flex Trace Panel
Developing Flex applications
by dirk eismann

his article has been updated for
Dreamweaver 8. If you are still
using Dreamweaver MX 2004,

please read the version of this article
series for Dreamweaver MX 2004. The
CSS features in Dreamweaver have been
vastly improved in Dreamweaver 8. You
can learn about those changes in Julie
Hallstrom’s article, “An Overview of CSS in
Dreamweaver 8.”
	 This article is the first in a series of
tutorials about Cascading Style Sheets
(CSS). The aim in Part 1 is to familiarize
you with some of the basics of CSS. I’ll
review some of the problems you may
run into. I’ll also cover the shorthand and
longhand versions of the CSS syntax.
	 I would like to make it clear that I do
not advocate you dropping the use of
tables as design elements. It is a case of
what suits you best. Whatever you feel
comfortable with is a good way to go.
What this series of tutorials will do is
provide you with the ability to create CSS
layouts using Dreamweaver 8. Once you
have some of the basics down, you will
move on to Part 3 to create a simple but
effective CSS layout.
	 All exercises you undertake in this
series are available as downloads, so you
can work alongside, or just review the
code as you read through. I will keep the
same structure as you work throughout
the series so you can keep everything
structured locally for easy reference if
required.

Creating a Cascading
Style Sheet
	 First, I’d just like to touch on the
outmoded use of font tags. By default,
Dreamweaver 8 uses styles rather than

font tags to redefine the appearance of
your text content. This is a good move in
the right direction that it is tantamount
to sacrilege to make the changes to
revert back to font tags. Let me explain
why – you can see the argument in pro-
cess in a little while.
	 To begin with, font tags are depre-
cated, which means they may not be
supported by browsers in the future.
They are no longer a part of the XHTML
specification. That is a good enough rea-
son not to use them.
	 The real problem with font tags
begins when your design client requests
changes. Maybe the font color needs
to be changed or perhaps the font face
needs to change from Verdana to Arial.
If the content has been generated using
font tags, making these changes can take
a huge amount of time. By contrast, you
can make changes such as these—and
indeed far more complicated ones—in
a very short time by editing an external
style sheet because it applies the chang-
es on a sitewide basis instantly. You also
get easier document manipulation and
lighter, faster-loading pages. The benefits
are many.
	 Taking the time to learn CSS, even
if you wish to use it only for redefining
elements rather than full-fledged page
layout, is well worth enduring the small
learning curve it takes to get you there.
Dreamweaver 8 has made giant strides in
its implementation of CSS. Take advan-
tage of these changes. I guarantee you
won’t be sorry!

How Do You Use CSS?
	 Let’s start at the beginning of the CSS
trail and look at the methods available to

Group Publisher Jeremy Geelan
Art Director Louis F. Cuffari

EDITORIAL BOARD
Dreamweaver Editor
Dave McFarland
Flash Editor
Brian Eubanks
Fireworks Editor
Joyce J. Evans
FreeHand Editor
Ron Rockwell
Louis F. Cuffari
Director Editor
Andrew Phelps
Captivate Editor
Tom Green

INTERNATIONAL ADVISORY BOARD
Jens Christian Brynildsen Norway,
David Hurrows UK, Joshua Davis USA,
Jon Gay USA, Craig Goodman USA,
Phillip Kerman USA, Danny Mavromatis USA,
Colin Moock Canada, Jesse Nieminen USA,
Gary Rosenzweig USA, John Tidwell USA

EDITORIAL
Editor	
Nancy Valentine, 201 802-3044
nancy@sys-con.com	

Associate Editor
	Seta Papazian, 201 802-3052
seta@sys-con.com	

Technical Editors
Jesse Warden • Sarge Sargent

To submit a proposal for an article, go to
http://grids.sys-con.com/proposal.

Subscriptions
E-mail: subscribe@sys-con.com
U.S. Toll Free: 888 303-5282
International: 201 802-3012
Fax: 201 782-9600
Cover Price U.S. $5.99
U.S. $29.99 (12 issues/1 year)
Canada/Mexico: $49.99/year
International: $59.99/year
Credit Card, U.S. Banks or Money Orders
Back Issues: $12/each

Editorial and Advertising Offices
Postmaster: Send all address changes to:
SYS-CON Media
135 Chestnut Ridge Rd.
Montvale, NJ 07645

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

List Rental Information
Kevin Collopy: 845 731-2684,
kevin.collopy@edithroman.com,
Frank Cipolla: 845 731-3832,
frank.cipolla@epostdirect.com

Promotional Reprints
Dorothy Gil, 201 802-3024
dorothy@sys-con.com

Copyright © 2005
by SYS-CON Publications, Inc. All rights
reserved. No part of this publication may be
reproduced or transmitted in any form or by
any means, electronic or mechanical, includ-
ing photocopy or any information storage and
retrieval system, without written permission.

MX Developer’s Journal (ISSN#1546-2242)
is published monthly (12 times a year) by
SYS-CON Publications, Inc., 135 Chestnut
Ridge Road, Montvale, NJ 07645.

SYS-CON Media and SYS-CON Publications,
Inc., reserve the right to revise, republish,
and authorize its readers to use the articles
submitted for publication. Macromedia and
Macromedia products are trademarks or
registered trademarks of Macromedia, Inc.
in the United States and other countries.
SYS-CON Publications, Inc., is independent
of Macromedia. All brand and product names
used on these pages are trade names, service
marks or trademarks of their respective com-
panies.

css

t

Understanding CSS Design Concepts
by adrian senior

Designing with CSS

mxdj.com • �

you when you want to apply a Cascading
Style Sheet to your documents. You can
use an external style sheet, an embedded
style sheet, or inline styles. External style
sheets are best because they give you the
most control over styles.

Using an External
Style Sheet
	 By using an external (linked) style
sheet, you exercise global control over
the appearance of every page in your site
that is linked to that CSS file. This is a very
powerful method of using CSS. By using
a linked style sheet, you have the ability
to make sitewide changes on countless
numbers of pages from a single loca-
tion. This can be completed in what may
amount to no more than a few seconds’
work. Powerful indeed!
	 Dreamweaver makes setting up an
external style sheet just about as easy as
it can be. In the first exercise, I’ll review
the procedure of creating an external
style sheet and how to link it to your web
pages:
1 	 Select File > New or press Control+N

to open the New Document dialog box
(see Figure 1)

2 	 In the Category column, select Basic
Page

3 	 In the Basic Page column, select CSS
4 	 Click the Create button

	 Your newly created Cascading Style
Sheet will open in Dreamweaver. If you

are completely unfamiliar with CSS, you
will notice that style sheets don’t have a
Design view. Your style sheet is little more
than a text file that contains your CSS
rules and their properties and values.
	 Alternatively, if you select the CSS
Style Sheets option in the Category col-
umn of the New Document dialog box,
the Basic Page column will show a list of
“starter” style sheets that already contain
some of the CSS rules you may use. You
won’t be using these starter pages at the
moment. Instead, you will be building
your own style sheet, and I will discuss
why you are setting the properties and
values you will use.
	 Now that you have created your first
CSS file, use the following steps to save it
in a defined site:
1 	 If you haven’t already defined a site,

do so now. If you need help defining
a site, see “How to Define a Site in
Dreamweaver” (TechNote 14028)

2 	 Create a new folder called CssFiles in
the root of your site

3 	 Save the CSS file in the new CssFiles
folder and name it external.css

	 Note: Normally, I suggest saving CSS

files in their own folder just for the sake of

good organization. This keeps your site

neat and tidy as it grows.

	 In this section, you will create two
pages that will demonstrate the power of
using an external style sheet:

1 	 Open the New Document dialog box
(File > New)

2 	 Select Basic Page from the Category
column

3 	 Select HTML from the Basic Page col-
umn

4 	 (Optional step) Click the Make
Document XHTML Compliant option

5 	 Click the Create button
6 	 Save the page to your site root and

name it external.html
7 	 Repeat Steps 1–5 to create a second

page
8 	 Save the second page to your site root

and name it external2.html

	 You now have all the documents you
need to complete the first section of this
tutorial.

Linking the Cascading Style
Sheet
	 You should now have Dreamweaver
open and have the following three docu-
ments displayed, saved, and ready to
work on:
• 	 external.css
• 	 external.html
• 	 external2.html

	 If you don’t have these files open in
Dreamweaver, open them now.
	 Here are the steps to the process of
linking your style sheet to your HTML
documents:
1 	 Open external.html, external2.html,

and external.css in Dreamweaver 8.
2 	 Press Shift+F11 to open the CSS Styles

panel.
3 	 Make sure external.html is the active

document, and click the Attach Style
Sheet button in the lower right corner
of the CSS Styles panel. The Attach
External Style Sheet dialog box opens.
Dreamweaver remembers your last
selection.

4 	 Select the Link option.
5 	 Click the Browse button.
6 	 The Select Style Sheet File dialog

opens.
7 	 Select Document from the Relative To

pop-up menu.
8 	 Select the external.css file you created

earlier. The path is inserted in the File/
URL field.

9 	 Click OK to add your style sheet name
to the CSS Styles panel.

10 	Click the Code view button. You will

fi
g

u
re

 1

� • mxdj.com 12 • 2005

see that Dreamweaver has inserted the
necessary code linking your document
to your style sheet.

11 	Select File > Save to save the file.
12 	Repeat the process to link external2.

html to your style sheet.

	 Before you begin to add rules into
your style sheet, there are one or two
things you should cover first. In the next
section, you will learn why it is important
to use a complete doc type. I will then
give a quick introduction to margins
and padding before discussing browser
default settings and why it is a good
practice to zero off these defaults so you
start on a level playing field.

Margins, Padding, and
Doc Types
	 Dreamweaver 8 (and MX 2004) adds
a complete doc type to every page you
create. This was another big step in the
right direction from Macromedia because
an incomplete doc type can cause many
problems with your CSS.
	 A complete doc type is shown below.
In this case, the doc type is a Transitional
XHTML doc type:

<!DOCTYPE html PUBLIC “-//W3C//DTD

XHTML 1.0 Transitional//EN” “http://

www.w3.org/TR/xhtml1/DTD/xhtml1-tran-

sitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

xhtml”>

	 An incomplete doc type will cause
your browser to drop into what is called
“quirks mode.” This will very quickly cause
you to lose your hair and any sanity you
may have if you are aiming for a pixel-
perfect design. Ensure that your doc type
is a complete doc type at all times. If
you are using a version of Dreamweaver
prior to MX 2004, you may want to view
the available doc types you can use at
the World Wide Web Consortium (W3C)
(www.w3.org/QA/2002/04/valid-dtd-list.
html).
	 You should also be aware that if you
have anything above the doc type in
Internet Explorer – even a comment – the
browser will revert to quirks mode. This,
of course, does not include the use of any
server-side code you may have above the
opening XHTML tag. Server-side code is,
of course, processed on the server and

not returned to the browser in the man-
ner I am talking about here.
	 In Figure 2, you are looking at Internet
Explorer 6 (IE6). When this browser – and
earlier versions – drops into quirks mode,
it has a unique problem in that it gets
the CSS box model completely wrong. It
includes the padding within the defined
width rather than adding the padding to
the width.
	 You can clearly see the results in
Figure 2. While this may not mean too
much to you at the moment, you will be
able to see the importance of ensuring
your pages are rendered in standards
mode. The small box in Figure 2 shows
IE6 in quirks mode. In this instance, quirks
mode was triggered by placing a simple
HTML comment above the doc type.

What Are Margins
and Padding?
	 Margins and padding exist within
many of the XHTML elements you will
use within your design work. Figure 3
represents a <p> element. The text is
clearly visible and the red area surround-
ing it indicates the presence of a padding
value. The black border around the red
area indicates the boundary of the <p>
element. Increasing or decreasing the
padding value causes the red area to
expand or contract to suit the value you
provide in your CSS rule for the <p> ele-
ment.
	 The blue area represents the margin
value. The margin value pushes away
other elements surrounding the <p> ele-
ment as long as they are in the document
flow. (I will talk more about the document
flow later in this series.) Increasing and
decreasing the margin value determines
how closely the elements surrounding
the <p> element are allowed to encroach
upon it.
	 So to recap: Padding resides within an
element and margins reside outside the
element.

The Syntax of CSS
	 CSS is a simple language. It is easy to
read and takes very little time to grab the
basics and start building your own style
sheets. After you complete this section of
the tutorial, you will have a good under-
standing of the syntax and various ele-
ments that exist within CSS rules. I begin
by creating a simple rule that clearly lays

SYS-CON Media
President & CEO
Fuat Kircaali, 201 802-3001
fuat@sys-con.com
Group Publisher
Jeremy Geelan, 201 802-3040
jeremy@sys-con.com

ADVERTISING
Senior Vice President, Sales &
Marketing
Carmen Gonzalez, 201 802-3021
carmen@sys-con.com	
Vice President, Sales & Marketing
Miles Silverman , 201 802-3029
miles@sys-con.com
Advertising Sales Director
Robyn Forma, 201 802-3022
robyn@sys-con.com	
Advertising Sales & Marketing
Manager
Dennis Leavey, 201 802-3023
dennis@sys-con.com
Advertising Sales Manager
Megan Mussa, 201 802-3023
megan@sys-con.com	
Associate Sales Managers
Kerry Mealia, 201 802-3026
kerry@sys-con.com
	
Production
Production Consultant
Jim Morgan, 201 802-3033
jim@sys-con.com
Lead Designer
Louis F. Cuffari, 201 802-3035
louis@sys-con.com
Art Director
Alex Botero, 201 802-3031
alex@sys-con.com	
Associate Art Director
Tami Beatty, 201 802-3038
tami@sys-con.com
Assistant Art Directors's
Andrea Boden, 201 802-3034
andrea@sys-con.com
Abraham Addo, 201 802-3037
abraham@sys-con.com	
Video Production
Frank Moricco, 201 802-3036
frank@sys-con.com

SYS-CON.COM
Consultant, Information Systems
Robert Diamond, 201 802-3051
robert@sys-con.com
Web Designers
Stephen Kilmurray, 201 802-3053
stephen@sys-con.com

Accounting
Financial Analyst
Joan LaRose, 201 802-3081
joan@sys-con.com
Accounts Payable
Betty White, 201 802-3002
betty@sys-con.com
Accounts Receivable
Gail Naples, 201 802-3062
gailn@sys-con.com	

CUSTOMER RELATIONS
Circulation Service Coordinators
Edna Earle Russell, 201 802-3081
edna@sys-con.com
Linda Lipton, 201 802-3012
linda@sys-con.com
JDJ Store Manager
Brundila Staropoli, 201 802-3000
bruni@sys-con.com

12 • 2005 mxdj.com • �

out the structure for you to see:

selector{

property: value;

}

Selector

	 The first part of the rule is called a
selector. The selector represents a struc-
ture that can be used as a condition
to define how an element looks in the
browser.

Property

	 The property section of the CSS rule
defines a specific area of the structure,
such as padding or margin properties.

Value

	 The value section of the CSS rule
defines a measurement – in general
terms. If you are defining how a <p> ele-
ment may look, the property might be a
reference to the <p> element’s padding
and the value might be 10 pixels:

p {

padding: 10px;

}

	 A CSS rule may, of course, contain
many property and value pairs. Each
would perform a specific task within the
structure to provide you with the look
and feel you want for the rule.

	 Property and value pairs are sepa-
rated by a colon (:). The space after the
colon is optional. Immediately following
the value, you have a semicolon (;). The
semicolon is said to be optional after the
last property/value pair in your CSS rule.
However, I prefer to leave it in place.
	 That is really all there is to CSS syntax;
it is as simple as that. While it is always
good to know your code, it is also good
to know that Dreamweaver writes the
CSS rules for you, as you shall see shortly.

Longhand or Shorthand?
	 When you write your CSS rules, you
have an option of two different writ-
ing styles: longhand and shorthand.
Dreamweaver allows you to set your own
preference for the writing style. Here are
the steps to access the Dreamweaver CSS
preferences:

Select Edit > Preferences, or use the

Control+U shortcut. In the Preferences

dialog box, select the CSS Styles

option in the Category list (see

Figure 4).

	 By selecting all the Use Shorthand
For options, as well as the According
to Settings Above option, you tell
Dreamweaver to write your CSS rules in
shorthand. That’s fine, but what is the
difference between longhand and short-
hand writing styles?

	 The obvious answer is that shorthand
creates a smaller file. Shorthand allows
you to condense your rules in such a
way that you can assign multiple prop-
erties and values in a single line. More
importantly, you can write your rules and
modify them faster – less work all around.
	 To show you how this is achieved, I
will write the same CSS rule in longhand
and then again in shorthand. The differ-
ence will be obvious. Once you are famil-
iar with shorthand, I will show you how it
can be condensed further to reduce the
amount of required information.
	 Let’s begin by creating a CSS rule
that redefines the margins of the body
element, first in longhand and then in
shorthand. Go to your external.css file
and type the following longhand code to
set the body margins:

body{

margin-top: 0;

margin-right: 10px;

margin-bottom: 0;

margin-left: 10px;

}

	 Right under that code, type the follow-
ing shorthand version of the same code:

body{

margin: 0 10px 0 10px;

}

	 There’s quite a bit of difference here.
Using the shorthand method, you elimi-
nate the need to describe each side of
the body you want to affect in the prop-
erty side of the rule. By simply declaring
“margin,” you avoid having to declare
each margin property within your CSS
rule. You also are able to apply the values
in a single line of code. This reduces the
CSS property from a four-line affair to a
single line.
	 Delete both the longhand and short-
hand code you just wrote.
	 How does the browser know which
value is for which side of the body ele-
ment? Simple, the browser takes the
order of the values into consideration and
then applies them accordingly. Reading
from left to right, the values are applied
to the top, right, bottom, and left mar-
gins. In this scenario you would have a
0 margin to the top and bottom of your
page, while the left and right margins

fi
g

u
re

 2

10 • mxdj.com 12 • 2005

would have a value of 10 pixels.
	 You can further reduce the shorthand
rule as follows:

body{

margin: 0 10px;

}

	 When the browser comes across a
rule like this one, it knows that the values
are pairs of values. The first value is taken
and applied to the top and bottom mar-
gins while the second value – 10px in this
instance – is applied to the left and right
margins.
	 If all the margins of the body are the
same value, you set the value only once:

body{

margin: 0;

}

	 In the rule shown above, a value of 0
is applied to all four sides of the body ele-
ment. Zeroing the margins on the body
element is a good practice, at least initial-
ly. Browsers tend to apply default margins
on the body (and other elements) if they
are not explicitly stated. Explicitly zeroing
the defaults and setting the margins you
require is the best way to guarantee that
browsers apply the margins you want.
Leaving the defaults can result in unex-
pected displacements within your page
because default margins vary greatly
from browser to browser.
	 The Opera browser is a special case
because it also applies a default padding
setting on the body element. This means
you need to zero off the padding on the

body as well as the margins to get a con-
sistent cross-browser starting point. To
achieve this, your final body rule would
look like the one below:

body{

margin: 0;

padding: 0;

}

	 The above rule provides you with a
cross-browser zeroed body element – a
good base from which to start when lay-
ing out pages.
	 Now that you understand about zero-
ing your page margins and the impor-
tance of a full doc type, return to your
external.css file and add the body rule to
your style sheet using the Dreamweaver
user interface. Here are the steps in the
process:
1 	 Click the New CSS Style button in the

CSS Styles panel. The New CSS Style
dialog box opens.

2 	 Select the Tag Selector Type option.
3 	 Select Body from the Tag pop-up

menu.
4 	 Select the body element.
5 	 Ensure that Dreamweaver has selected

the correct style sheet in the Define In
pop-up menu.

6 	 Click OK to open the CSS Style
Definition dialog box.

7 	 Select the Box category option.
8 	 Ensure that the Same for All options

are selected for both Padding and
Margin.

9 	 Enter 0 in the Padding field.
10 	Enter 0 to the Margin field.
11 	Click the OK button.

12 	Look at the code that Dreamweaver
enters in the external.css file. Although
Dreamweaver has added a value for
the measurement (px), this is not nec-
essary for a zero value.

13 	Select the body rule and delete it. You
will next use the Dreamweaver code
hints to write your CSS body rule.

14 	Type body { . As you begin typing, the
code hints appear.

15 	Select Margin from the code hint list.
16 	Enter a value of 0 after the margin

property: margin: value.
17 	Press Enter to go to the next line of

code and type p.
18 	Select Padding from the code hint list.
19 	Enter a value of 0 after the padding

property: padding: value.
20 	Select File > Save to save the file.

	 It is possible to reduce the amount
of characters in a color value within your
style sheet rules. If a color is defined in
three pairs (for instance, red is #FF0000),
that could be written as #F00, where each
character represents a matching pair. The
F represents FF and the single zero in the
second and third positions of the value
indicate 00 and 00. This technique can
only be applied if the color value contains
three pairs. Other examples of this would
be #FFFFFF (white) written as #FFF and
#000000 (black) written as #000.
	 Alternatively, each color value could
be set using the color’s name:
• 	 color: red;
• 	 color: black;
• 	 color: white;

	 The syntax of CSS is a flexible one. In
many cases, it allows you to use different
syntax to achieve the same results.
	 In the next section, we will look at
how you can lay out your web pages cor-
rectly by using semantic markup.

Semantic Markup
	 “The Semantic Web approach devel-
ops languages for expressing information
in a machine processable form” —(W3C)
The line above is a quote, so it resides in
a pair of <blockquote> tags. This tag lets
a screen reader know that the text is a
quote and not just another paragraph.
Screen readers are machines that enable
visually impaired people to surf the web.
Creating a semantically correct document
in its simplest form is just one case of

fi
g

u
re

 3

fi
g

u
re

 4

12 • mxdj.com 12 • 2005

using the XHTML elements supplied with
the specification to lay out your docu-
ment correctly.
	 Each element provided in the XHTML
specification has been designed to be
used in a specific way and each has a spe-
cific meaning. An h element is a title and
any text between title tags is instantly
recognized as a title by a machine
reader, just as text within <p> tags is
recognized as being a paragraph. Not all
tags are semantic in their makeup. Take
the tag, for instance. A
tag has no meaning associated with it;
it is simply a container element. If you
were using a tag and styled it to
emphasize text within a paragraph, you
would be better off using the tag.
This is what it was designed to do. It says
to the machine reader this text should be
emphasized; in turn, the machine reader
emphasizes the text within the
tags.

Semantic Improvements in
Dreamweaver 8
	 This is another area in which
Dreamweaver progressed greatly. In ear-
lier versions of Dreamweaver (prior to MX
2004), pressing Control+I or clicking the I
button in the Property inspector inserted
a pair of <i> tags to italicize the text.
While this looked fine to the human eye,
the <i> tag means absolutely nothing to
a machine reader. Dreamweaver 8 (and
MX 2004) now inserts tags when
you press Control+I or click the I button
in the Property inspector. A machine
reader understands that the tag
means to emphasize. In much the same
way, the Control+B shortcut (or B button
in the Property inspector) now inserts
 tags rather than tags. The
resetting of these keyboard shortcuts in
Dreamweaver MX 2004 was a move in the
right direction for creating semantically
correct documents.

Hierarchical Structure
	 Creating text in a p element and then
using font tags – or CSS for that mat-
ter – to increase the text size so it looks
like a heading and then applying a bold
tag to it does not make it a header. The
finished result might look like a header
to the human eye. However, that’s where
the association of the text with a header
ends.

	 If you want to create a header, you
should use one of the header elements.
The header element you use depends
on where you are in your document. The
main heading on your page would be an
h1. Subheadings would be h2, and so on.
You have no need to use all the headings
within your document but they are avail-
able if you require them:
• 	 h1
• 	 h2
• 	 h3
• 	 h4
• 	 h5
• 	 h6

	 Each header element is hierarchical in
nature, with h1 being the most important
header and h6 being the least important
header. All of them have a natural place
within your documents. Commonly you
will see designers typing text directly
into a <td> tag set within a table – not
good. This practice gives machine read-
ers no indication at all as to how to read
the text. If you are dealing with copy text
below a header, then you should prob-
ably set it within a p element. Once the
text is set within the <p> tags, machine
readers know what type of content they
are looking at and how it should be read.
The idea is to set your document out in a
hierarchical manner that is easily read not
only by humans but by machine readers
(see Figure 5).
	 I can hear you saying, “OK, that
sounds fine but h1 elements are huge!
I understand how making semantically
correct documents is a good thing, but I
also want my documents to look good.”

Enter CSS
	 CSS provides you with the ability to
redefine elements to take on the appear-
ance you specify. This is cool because you
can set the size of h1 to whatever you
want. You can set the font face, margins,
padding, color, background color, and
a whole list of other properties all from
within a single CSS rule. This keeps your
document semantically correct.
	 Not only can you redefine the h1 ele-
ment, but once its rule is safely in your
style sheet and the pages in your website
are linked to that style sheet, you can
change its appearance globally from a
single location in a matter of seconds.
The demo below walks you through add-

ing an h1 element and demonstrates the
ease with which you can control your
documents from an external style sheet.
	 Here are the steps in the process:
1 	 Click the New CSS style button in the

CSS Styles panel. The New CSS Style
dialog box opens.

2 	 Ensure that the Tag Selector Type
option is selected.

3 	 Select h1 from the Tag pop-up menu.
4 	 Select external.css from the Define In

pop-up menu.
5 	 Click OK.
6 	 Select “Georgia, Times New Roman,

Times, Serif” from the Font pop-up
menu.

7 	 Enter 100 in the Size text box and
select % from the unit of measure pop-
up menu.

8 	 Enter #003366 in the Color text box.
9 	 Select the Box category.
10 	Click the Same for All option in both

the Padding and Margin sections.
11 	Enter a value of 0 for both the Margin

and Padding.
12 	Click OK.
13 	Open external.css. You can see your

newly added h1 rule.
14 	Select File > Save to save the external.

css file.

	 As you can see in the CSS Styles panel,
your h1 rule is now shown with the body
element in the external.css tree.
	 Zoe Gillenwater wrote an excellent
article for Community MX that goes
into more detail on semantic markup
(www.communitymx.com/abstract.
cfm?cid=A1A37). It also includes informa-
tion on how semantic markup can help
your search engine positioning.

ID, Class, and
Descendant Selectors
	 In the previous section I reviewed
the parts of a CSS rule. I now take you
through some of the more commonly
used selectors and look at how they are
used.

The ID Selector
	 I begin by defining a div with an ID
selector. The div you define here is a con-
tainer or wrapper div. Using a wrapper
div is a common practice in CSS position-
ing, and we will look deeper into how
they work later in Part 3. The ID selector
is preceded by the pound sign (#) within

12 • 2005 mxdj.com • 13

your style sheet (see Listing 1). The mar-
gins you set should be somewhat familiar
to you from the way you set up your
body margins earlier. I am using a pairs
value to declare the settings. As you can
see, the top and bottom will be zero.

Listing 1: Wrapper ID selector

#wrapper{

width: 770px;

margin: 0 auto;

}

	 The auto value may be new to you,
so let me explain. When you progress
to laying out your first CSS positioning
document in Part 3, you will create a
fixed-width layout. The width of your con-
tainer or wrapper div will be 770 pixels to
ensure that you have no horizontal scroll-
ing for your viewers who have set their
browsers to an 800-pixel-wide resolution.
The margin value of auto is applied to the
left and right sides of the wrapper div.
This means that regardless of the users’
browser window width, the page content
is always centered horizontally. The space
on either side of the fixed-width wrapper
div is distributed evenly by the auto pairs
value in your style sheet. You will see how
these values are set in the Creating an ID
Selector demo at the end of this section.
	 The pound sign (#) in your style sheet
indicates that your wrapper div is an ID
selector. However, it is not used when
you reference the ID selector from within
your XHTML code. If you were inserting
the wrapper div into your XHTML docu-
ment, you would reference it as shown in
Listing 2.

Listing 2: ID referenced in HTML, as

opposed to how it is written in the CSS file

<div id=”wrapper”>

Our wrapper div content

</div>

	 As you can see, you reference the
wrapper by using id=”wrapper”. The prop-
erties and values you set for your wrap-
per div within your style sheet are now

applied to the wrapper div in your XHTML
code.
	 Caution: You can only use an ID selec-
tor name once in your XHTML document.
For example, if you defined an ID selector
in your style sheet and then reused that
selector name on an image swap behav-
ior within the same document, you will
get some very odd behavior.
	 Here are the steps in the process:
1 	 Click the New CSS Style button in the

CSS Styles panel. The New CSS Style
dialog box opens.

2 	 For Selector Type, click the Advanced
option.

3 	 Name the ID selector #wrapper. When
you create an ID selector, you type
the name into the Selector field. An
ID selector is always preceded by the
pound (#) sign.

4 	 Ensure that you have external.css
selected in the Define In pop-up menu.

5 	 Click OK.
6 	 Select the Box category.
7 	 Deselect the Same for All option in the

Margin section.
8 	 In the Top text box, enter 0.
9 	 In the Right text box, enter auto.
10 	In the Bottom text box, enter 0.
11 	In the Left text box, enter auto.
12 	Select the Border category.
13 	Deselect the Same For All option in

the Style area. You are going to add a 1
pixel solid black border to the left and
right sides of your #wrapper ID.

14 	Select Solid from the Right and Left
pop-up menus for the border style.

15 	Deselect the Same For All option in
the Width section.

16 	Enter 1 in the Right and Left text
boxes for the border width.

17 	Deselect the Same For All option in
the Color section.

18 	Enter #000000 in the Right and Left
text boxes for the border color.

19 	Select the Positioning category.
20 	Select Relative from the Type pop-up

menu.
21 	Click OK.
22 	Open the external.css file. You will now

see the newly created #wrapper rule.

23 	Select the File > Save to save the
external.css file.

	 Your #wrapper selector is now in the
CSS Styles panel.

The Class Selector
	 Unlike the ID selector, the class selec-
tor can be used as often as you need
within your XHTML document. The class
selector is preceded by a period (.) within
your style sheet (see Listing 3).

Listing 3: Class selector

.leftimage {

margin-right: 15px;

margin-bottom: 5px;

}

	 The period (.) in the style sheet
indicates that the rule is a class selector.
However, the period is not used when
you reference the class selector from
within your XHTML code. For example,
if you were inserting the leftimage class
into your XHTML document, you would
reference it as shown in Listing 4.

Listing 4: Referencing a class selector

within XHTML

<img src=”images/mypic.jpg” alt=”some

text “ width=”145” height=”180”

class=”leftimage” />

	 The final outcome is the same wheth-
er you use a class selector or an ID selec-
tor. Because you will need to apply the
settings you have declared within your
rule on many occasions, and often more
than once in the same document, you
really need this rule to be a class selector
instead of an ID selector.
	 Here are the steps in the process:
1 	 Click the New CSS style button in the

CSS Styles panel. The New CSS Style
dialog opens.

2 	 For Selector Type, click the Class
option.

3 	 Name your class selector .leftimage.
A class name is always preceded by a
period.

“You can only use an ID selector name
once in your XHTML document”

14 • mxdj.com 12 • 2005

4 	 Ensure that the external.css style sheet
is selected.

5 	 Click OK.
6 	 Select the Box category.
7 	 Deselect the Same For All option in the

Margin section.
8 	 Give the Right margin a value of 15.
9 	 Give the Bottom margin a value of 5.
10 	Click OK.
11 	Open the external.css file and view

your .leftimage class rule.
12 	Select File > Save to save the external.

css file.

	 The .leftimage class appears in the
external.css tree in the CSS Styles panel.

Pattern Matching and the
Descendant Selector
	 The descendant selector is a powerful
way to target specific elements within
specific areas of your XHTML documents.
Using a descendant selector, you could,
for instance, easily target any em ele-
ments that reside within p elements.
There is no need to create a separate
class and then apply it to the tags.
You can simply target them from the style
sheet. There is a space between each ele-
ment within the descendant selector (see
Listing 5). A descendant selector works in
much the same way as the forward slash
(/) does in a folder hierarchy within a URL.

Listing 5: Descendant selector applying to

em elements within p elements

p em{

color: #990000;

}

	 The rule shown in Listing 5 says, Find
p elements and if those p elements con-
tain em elements, change the text color
to #990000.
	 For any em elements that exist out-
side a p element, or within a different ele-
ment, the pattern is broken and the text
color change is not applied. The descen-
dant selector allows you to pattern-match
your XHTML documents and to be very
specific as to how you affect elements
with any given rule.

	 Here are the steps in the process:
1 	 Click the New CSS style button in the

CSS Styles panel. The New CSS Style
dialog box opens.

2 	 For Selector Type, click the Advanced
option.

3 	 In the Selector text box, enter p em.
Notice the space between the two ele-
ments. This is important; this space is
known as a descendant combinator.

4 	 Ensure that the external.css style sheet
is selected.

5 	 Click OK.
6 	 Select the Type category in the CSS

Style Definition dialog box that opens.
7 	 Enter #990000 in the Color text box.
8 	 Click OK. Your newly created descen-

dant selector appears in the external.
css file.

9 	 Select File > Save to save the external.
css file.

	 The descendant selector has been
added to the external.css tree in the CSS
Styles panel.

Redefining a Selector
	 Review the Defining the h1 Type
Selector demo and then create a new rule
in your external.css file. Redefine the p
element and give one property and value
pair. Set the property to font-size and set
the value to 80% (see Listing 6).

Listing 6: Redefined p rule

p{

font-size: 80%;

}

Conclusion
	 If you were totally new to CSS at
the beginning of this tutorial, you have
come far. You have seen how you can
use Dreamweaver MX 2004 to create an
external style sheet and link that style
sheet to documents within your website.
You have learned about selectors and
how to create them.
	 Specifically, you have looked at:
• 	 Redefining elements with the Type

selector
• 	 Creating ID selectors

• 	 Creating class selectors
• 	 Creating descendant selectors
• 	 Zeroing off your body element

	 In Part 2 you will explore CSS further
and look at how your document interacts
with the relevant CSS Styles panel to
make editing CSS a breeze in the Design
view. You will look at avoiding a common
pitfall or two and lay the foundations fur-
ther to create your first CSS positioning
layout, which I cover in Part 3.
	 The CSS rules you have created in this
tutorial will be put to good use as you
work your way through this series. I hope
that you now have a good understand-
ing of how to create CSS rules using the
Dreamweaver design panels.

Part 2 of this article can be found at www.

macromedia.com/devnet/dreamweaver/

articles/css_concepts_pt2.html and Part

3 is at www.macromedia.com/devnet/

dreamweaver/articles/css_concepts_pt3.

html.

Adrian Senior owns the UK-based

web design agency Webade, which

has been in business since 1998. He

is also a member of Team Macromedia

and a partner at Community MX. The

year 2004 saw Adrian’s first trip to

America, where he visited Orlando and

delivered two sessions at the TODCon

conference. Before becoming involved

with website design and development,

Adrian’s working life centered around

the shipyards of the River Mersey, and

oil production units in the North Sea.

Adrian also provides training courses

for companies who need to train their

designers how to build compliant,

accessible web sites using CSS and

xhtml. He’s been married to his wife,

Janette, for 24 years and has two chil-

dren, Antony and Eleanor.

This article originally appeared in the

Macromedia Developer Center,

www.macromedia.com/devnet/dream-

weaver/articles/css_concepts_mx2004.

html.

“The CSS rules you have created in
this tutorial will be put to good use

as you work your way through this series”

16 • mxdj.com 12 • 2005

y tweening shapes, you can
create an effect similar to
morphing, making one shape
appear to change into another

shape over time. Flash can also tween
the location, size, color, and opacity of
shapes.
	 Tweening one shape at a time usu-
ally yields the best results. If you tween
multiple shapes at one time, and want
them to morph together, all the shapes
must be on the same layer. Otherwise,
for some effects, you should shape tween
each shape on separate layers if you
do not want them to affect each other.
Each rectangle—the curtain effect in the
background and the rectangle on top
– tweens on its own separate layer.
	 To apply shape tweening to groups,
instances, or bitmap images, you must
first break these elements apart (Modify >
Break Apart). To apply shape tweening to
text, you must break the text apart twice
to convert the text to objects.
	 Note: To control more complex or
improbable shape changes, you use
shape hints, which control how parts of
the original shape move into the new
shape. For information, see the following
section, Using Shape Hints with Shape
Tweens.

	 To tween a shape:
1	 Create a new file and call it sha-

petween.fla.
2	 Select Frame 1 of Layer 1. This is where

the animation will start.
3	 Create a graphic with the Pen, Oval,

Rectangle, Pencil, or Brush tool. For
best results when you’re starting out,
the frame should contain only one
drawing (such as a single oval shape).

4	 Select Frame 10 of Layer 1 and create a
second keyframe (F6).

5	 Select the artwork on the Stage at
Frame 10 and do one of the following:
•	 Modify the shape, color, opacity, or

position of the artwork.
•	 Delete the artwork and place new

artwork in the second keyframe (it
should be a raw graphic drawing as
well).

6	 Select a frame in Timeline between
Frame 1 and Frame 10.

7	 In the Property inspector (Window >
Properties > Properties), select Shape
from the Tween pop-up menu.

8	 Select an option for Blend:
•	 Distributive creates an animation in

which the intermediate shapes are
smoother and more irregular.

•	 Angular creates an animation that
preserves apparent corners and
straight lines in the intermediate
shapes.

	 Note: Angular is appropriate only for

blending shapes with sharp corners and

straight lines. If the shapes you select do

not have corners, Flash reverts to distribu-

tive shape tweening.

Using Shape Hints with
Shape Tweens
	 To control more complex or improb-
able shape changes, you can use shape
hints. Shape hints identify points that
should correspond to starting and ending
shapes. For example, if you are tweening
the letter M into the letter N, you can use
a shape hint to mark corner of the letter’s
shape. Then, instead of the letters becom-
ing a jumble of lines while the shape

change takes place, each letter remains
recognizable and changes separately dur-
ing the shift.
	 To use shape hints:
1	 Create a shape tween (see the previous

section, Creating Shape Tweens).
2	 Select Frame 1 of the layer with the

animation on the Timeline.
3	 Select Modify > Shape > Add Shape

Hint.
4	 Move the shape hint to an edge or cor-

ner that you want to mark.
5	 Select the next keyframe in the tween-

ing sequence.
6	 Move the shape hint to the edge or

corner in the ending shape that should
correspond to the first location you
marked.

	 Repeat this process to add additional
shape hints. New hints appear with the
letters that follow (b, c, and so on).
	 The SWF files animate the letter M
into the letter N. The top SWF file does
not use shape hints to morph the two
letters, while the bottom SWF file uses
shape hints to improve the morphing.
Refer to the sample file shape_hints.fla,
which is part of the animation_samples.
zip archive that accompanies this article.
	 Shape hints contain letters (a through
z) for identifying which points correspond
in the starting and ending shape. You can
use up to 26 shape hints. Shape hints are
yellow in a starting keyframe, green in an
ending keyframe, and red when within
a fill area or outside the shape (Flash
ignores red shape hints).
	 For best results when tweening
shapes, follow these guidelines:
•	 In complex shape tweening, create

intermediate shapes and tween them

Flash Animation
Learning Guide

By tweening shapes, you can create an
effect similar to morphing - Part 2

by jen dehaan & chris georgenes

animation

b

18 • mxdj.com 12 • 2005

instead of just defining a starting and
ending shape.

•	 Make sure that shape hints are logi-
cal. For example, if you’re using three
shape hints for a triangle, they must be
in the same order on the original trian-
gle and on the triangle to be tweened.
The order cannot be abc in the first
keyframe and acb in the second.

•	 Shape hints work best if you place
them in counterclockwise order begin-
ning at the top left corner of the shape.

Creating Frame-by-Frame
Animations
	 A frame-by-frame animation changes
the contents of the Stage in every frame
and is best suited to a complex anima-
tion in which an image changes in every
frame instead of simply moving across
the Stage. This type of animation increas-
es the file size more rapidly than tweened
animation because Flash stores the values
for each keyframe.
	 To create a frame-by-frame anima-
tion, you define each frame as a keyframe
and create a different (typically modified)
image for each frame. Each new keyframe
on a layer typically contains the same
contents as the keyframe preceding it
because the contents of a frame are cop-
ied to the next keyframe when you select
a frame and press F6. By selecting a frame
and pressing F6, you can modify each
new keyframe in the animation incremen-
tally. The bee’s wing moves only slightly
so that a frame-by-frame animation was
used to move the wing very slightly on
sequential frames.
	 Often, you use the onion skin feature
to view incremental changes between
each keyframe. A motion tween has
been applied to the lemur’s arm and
head. The onion skin tool enables you to
view multiple frames of the animation at
once.
	 To turn on onion skinning, click the
Onion Skin or Onion Skin Outlines button
near the bottom of the Timeline. Drag
the markers above the Timeline to view
multiple frames at once. The onion skin
outlines are enabled for an animation on
the Stage.
	 To create a frame-by-frame animation:
1	 Create a new file and call it frameby-

frame.fla.
2	 Select Frame 1 of Layer 1. This is where

the animation will start.

3	 Create a graphic with the Pen,
Oval, Rectangle, Pencil, or Brush
tool. You can also paste graphics
from the Clipboard or import a file
(such as an Adobe Illustrator illus-
tration).

4	 Select the next frame on Layer 1 and
create a second keyframe (F6). The
contents of Frame 2 are the same as
Frame 1 at this time.

5	 Alter the contents of this frame on the
Stage to develop the next increment
of the animation. You might select the
graphic and move it a couple pixels to
the right, add some new lines, or bend
a line on a shape.

6	 To complete your frame-by-frame ani-
mation sequence, repeat Steps 4 and 5
until you’ve built the motion you want.

7	 To test the animation sequence, select
Control > Play or Control > Test Movie.

Editing Your Animations
	 In Flash 8 you can use various tools to
edit your animations, such as commands
to insert frames, modify keyframes,
onion-skinning tools, and the ability to
move your animations around timelines.
	 After you create a frame or a key-
frame, you can move it elsewhere in the
active layer or to another layer, remove it,
and make other changes. Only keyframes
are editable. You can view tweened
frames, but you can’t edit them directly.
To edit tweened frames, you change one
of the defining keyframes or insert a new
keyframe between the beginning and
ending keyframes. You can drag items
from the Library panel onto the Stage to
add the items to the current keyframe.
	 To display and edit more than one
frame at a time, use onion skinning, cov-
ered next.

fi
g

u
re

 1
fi

g
u

re
 2

12 • 2005 mxdj.com • 19

Inserting and Modifying
Frames
	 To insert frames in the Timeline, do
one of the following:
•	 To insert a new frame, select Insert >

Timeline > Frame.
•	 To create a new keyframe, select Insert

> Timeline > Keyframe, or right-click
(Windows) or Control-click (Macintosh)
the frame where you want to place a
keyframe, and select Insert Keyframe
from the context menu.

•	 To create a new blank keyframe, select
Insert > Timeline > Blank Keyframe,
or right-click (Windows) or Control-
click (Macintosh) the frame where you
want to place the keyframe, and select
Insert Blank Keyframe from the context
menu.

	 To delete or modify a frame or key-
frame, do one of the following:
•	 To delete a frame, keyframe, or frame

sequence, select the frame, keyframe,
or sequence and right-click (Windows)
or Control-click (Macintosh) the frame,
keyframe, or sequence and select
Remove Frames from the context
menu. Surrounding frames remain
unchanged.

•	 To move a keyframe or frame sequence
and its contents, select the keyframe
or sequence, then drag to the desired
location.

•	 To extend the duration of a keyframe,
Alt-drag (Windows) or Option-drag

(Macintosh) the keyframe to the final
frame of the new sequence.

•	 To copy a keyframe or frame sequence
by dragging, select the keyframe or
sequence, then Alt-drag (Windows) or
Option-drag (Macintosh) to the new
location.

•	 To copy and paste a frame or frame
sequence, select the frame or
sequence and select Edit > Timeline
> Copy Frames. Select a frame or
sequence that you want to replace,
and select Edit > Timeline > Paste
Frames.

•	 To convert a keyframe to a frame,
select the keyframe and select Modify
> Timeline > Clear Keyframe, or
right-click (Windows) or Control-click
(Macintosh) the keyframe and select
Clear Keyframe from the context menu.
The cleared keyframe and all frames
up to the subsequent keyframe are
replaced with the contents of the
frame preceding the cleared keyframe.

•	 To change the length of a tweened
sequence, drag the beginning or end-
ing keyframe left or right. To change
the length of a frame-by-frame
sequence, see Creating frame-by-frame
animations.

•	 To add a library item to the current
keyframe, drag the item from the
Library panel onto the Stage.

•	 To reverse an animation sequence,
select the appropriate frames in one
or more layers and select Modify >

Timeline > Reverse Frames. There must
be keyframes at the beginning and
end of the sequence.

 Using Onion Skinning
	 Normally, Flash displays one frame
of the animation sequence at a time on
the Stage. To help you position and edit
a frame-by-frame animation, you can
view two or more frames on the Stage
at once. The frame under the playhead
appears in full color, while surrounding
frames are dimmed, making it appear
as if each frame were drawn on a sheet
of translucent onion-skin paper and the
sheets were stacked on top of each other.
Dimmed frames cannot be edited.
	 To simultaneously see several frames
of an animation on the Stage, click the
Onion Skin button. All frames between
the Start Onion Skin and End Onion
Skin markers (in the Timeline header)
are superimposed as one frame in the
Document window.
	 To control onion skinning display, do
any of the following:
•	 To display onion skinned frames as

outlines, click the Onion Skin Outlines
button.

•	 To change the position of either onion
skin marker, drag its pointer to a new
location. (Normally, the onion skin
markers move in conjunction with the
current frame pointer.)

	 • To enable editing of all frames
between onion skin markers, click the

fi
g

u
re

 3

20 • mxdj.com 12 • 2005

Our newest partners:
CFMX Hosting, Fulgen Technology,

Harbour Light Strategic Marketing and ipXperts

Call for more info:
1.866.870.6358

www.BeSavvy.com
Savvy Software Inc.

You don’t have to
mortgage the farm
for a web content

manager
that’s Powerful
and Affordable.

Edit Multiple Frames button. Usually
onion skinning lets you edit only
the current frame. However, you can
display the contents of each frame
between the onion skin markers nor-
mally, and make each available for
editing, regardless of which is the cur-
rent frame.

	 Note: Locked layers (those with a pad-

lock icon) aren’t displayed when onion

skinning is turned on. To avoid a multitude

of confusing images, you can lock or hide

the layers you don’t want onion skinned.

	 To change the display of onion skin
markers, click the Modify Onion Markers
button and select an item from the menu:
•	 Always Show Markers displays the

onion skin markers in the Timeline
header whether or not onion skinning
is on.

•	 Anchor Onion locks the onion skin
markers to their current position in the
Timeline header. Normally, the Onion
Skin range is relative to the current
frame pointer and the Onion Skin
markers. By anchoring the Onion Skin
markers, you prevent them from mov-
ing with the current frame pointer.

•	 Onion 2 displays two frames on either
side of the current frame.

•	 Onion 5 displays five frames on either
side of the current frame.

•	 Onion All displays all frames on either
side of the current frame.

Moving an Entire Animation
	 If you need to move an entire anima-
tion on the Stage, you must move the
graphics in all frames and layers at once
to avoid realigning everything.
	 To move the entire animation to
another location on the Stage:
1	 Unlock all layers. To move everything

on one or more layers but nothing on
other layers, lock or hide all the layers
you don’t want to move.

2	 Click the Edit Multiple Frames button
in the Timeline.

3	 Drag the onion skin markers so that
they enclose all the frames you want to
select, or click Modify Onion Markers
and select Onion All.

4	 Select Edit > Select All.
5	 Drag the entire animation to the new

location on the Stage.

Using Timeline Effects
	 Flash includes prebuilt Timeline
effects that enable you to create complex
animations with a minimal number of
steps. You can apply Timeline effects to
the following objects:
•	 Text
•	 Graphics, including shapes, groups,

and graphic symbols
•	 Bitmap images
•	 Button symbols

	 Note: Timeline effects share some of

the same names as filter effects; however,

they are completely different features.

Timeline effects are automated vector

animations you apply to the previously

mentioned objects. Filter effects are static

effects you apply to objects and animate in

various ways by applying code or motion

tweens.

Adding a Timeline Effect
	 When you add a Timeline effect to an
object, Flash creates a layer and transfers
the object to the new layer. The object
is placed inside the effect graphic, and
all tweens and transformations required
for the effect reside in the graphic on the
newly created layer. The new layer automat-
ically receives the same name as the effect,
appended with a number that represents
the order in which the effect is applied, out
of all effects in your document.
	 When you add a Timeline effect, a
folder with the effect’s name is added to
the Library, containing elements used in
creating the effect.
	 To add an effect to an object:
1	 Do one of the following to add a

Timeline effect:
•	 Select the object to which you’re

adding the Timeline effect. Select
Insert > Timeline Effects. Then select
Assistants, Effects, or Transition/
Transform from the submenu, and
select an effect from the list.

•	 Right-click (Windows) or Control-
click (Macintosh) the object to
which you’re adding the Timeline
effect. From the context menu,
select Timeline Effects. Then select
Assistants, Effects, or Transition/
Transform from the submenu, and
select an effect from the list.

2	 Effects available for the type of object you’ve
selected appear as active menu choices.

3	 In the dialog box that appears for the
effect, view the effect preview based
on default settings. Modify the default
settings as desired, and then click
Update Preview to view the effect with
the new settings.

4	 When the Timeline effect appears as
desired in the preview window, click
OK.

Editing a Timeline Effect
	 You edit Timeline effects using the
Effect Settings dialog box:
1	 Select the object associated with the

effect on the Stage.
2	 To open the Effect Settings dialog box,

do one of the following:
•	 In the Property inspector, click Edit.
•	 Right-click (Windows) or Control-

click (Macintosh) the object and
select Timeline Effects > Edit Effect
from the context menu.

3	 In the Effect Settings dialog box, edit
the settings you want to edit, and click
OK to apply your settings.

Deleting a Timeline Effect
	 You use the context menu to delete
Timeline effects. Right-click (Windows)
or Control-click (Macintosh) the object
on the Stage that has the Timeline effect
you want to remove, and select Timeline
Effects > Remove Effect from the context
menu.

About Scripting Animation
	 You can use ActionScript 2.0 to add
animation to your Flash applications
instead of using motion or shape tweens
on a timeline. The following sections
show you how to use code to animate
instances, such as changing the transpar-
ency and appearance of the instance, and
moving the instance around the Stage.
	 For information on using the Tween
and TransitionManager classes to further
automate code-based animations, see the
following section, Using the Tween and
TransitionManager Classes. These classes
help you add advanced easing equa-
tions and transition animations to movie
clip instances in your application. Many
of these effects are difficult to recreate
using ActionScript without these prebuilt
classes because the code involves writ-
ing complex mathematical equations to
achieve the effect.

22 • mxdj.com 12 • 2005

	 The animation uses code to tween
the bee horizontally across the Stage.
Notice the easing that has been applied
to the motion as well. This animation
uses very few lines of code to achieve
this effect.
	 Note: Issues regarding frame rate
discussed in the earlier section, About
Frame Rate and Animation, also apply to
scripted animation.

Fading a Movie Clip
	 When you work with movie clips on
the Stage, you might want to fade the
movie clip in or out instead of toggling its
_visible property. The following examples,
taken from the Flash documentation,
show you a variety of simple ways to use
ActionScript to create animation.
	 The following procedure demon-
strates how to use an onEnterFrame
event handler to animate a movie clip. To
fade a movie clip by using code:
1	 Create a new Flash document called

fade1.fla.
2	 Draw some graphics on the Stage

using the drawing tools, or import an
image to the Stage (File > Import >
Import to Stage).

3	 Select the content on the Stage and
select Modify > Convert to Symbol.

4	 Select the Movie Clip option and click
OK to create the symbol.

5	 Select the movie clip instance on
the Stage and type img1_mc in the
Instance Name text box in the Property
inspector.

6	 Select Frame 1 of the Timeline and
add the following code to the Actions
panel:

img1_mc.onEnterFrame = function() {

 img1_mc._alpha -= 5;

 if (img1_mc._alpha <= 0) {

 mg1_mc._visible = false;

 delete img1_mc.onEnterFrame;

 }

};

	 This code uses an onEnterFrame event
handler, which is invoked repeatedly at
the frame rate of the SWF file. The num-
ber of times per second that the event
handler is called depends on the frame
rate at which the Flash document is set. If
the frame rate is 12 fps, the onEnterFrame
event handler is invoked 12 times per
second. Likewise, if the Flash document’s
frame rate is 30 fps, the event handler is
invoked 30 times per second.
7	 Select Control > Test Movie to test the

document. The movie clip you added
to the Stage slowly fades out.

	 You can modify the _alpha property
by using the setInterval() function instead
of an onEnterFrame event handler, as the
next procedure shows. To fade an object
by using the setInterval() function:
1	 Create a new Flash document called

fade2.fla.
2	 Draw some graphics on the Stage, or

import an image to the Stage (File >
Import > Import to Stage).

3	 Select the content on the Stage and
select Modify > Convert to Symbol.

4	 Select the Movie Clip option and click
OK to create the symbol.

5	 Select the movie clip instance on the
Stage and type img1_mc in the Instance
Name text box in the Property inspector.

6	 Select Frame 1 of the Timeline and
add the following code to the Actions
panel:

var alpha_interval:Number =

setInterval(fadeImage, 50, img1_mc);

function fadeImage(target_mc:

MovieClip):Void {

 target_mc._alpha -= 5;

 if (target_mc._alpha <= 0) {

 target_mc._visible = false;

 clearInterval(alpha_interval);

 }

}

	 The setInterval() function behaves
slightly differently than the onEnterFrame
event handler because the setInterval()
function tells Flash precisely how fre-
quently the code should call a particular
function. In this code example, the user-
defined fadeImage() function is called
every 50 milliseconds (20 times per
second). The fadeImage() function decre-
ments the value of the current movie
clip’s _alpha property. When the _alpha
value is equal to or less than 0, the inter-
val is cleared and the fadeImage() func-
tion stops executing.
7	 Select Control > Test Movie to test the

document. The movie clip you added
to the Stage slowly fades out.

	 To move an instance on the Stage by
using code:
1	 Create a new Flash document called

moveClip.fla.
2	 Change the frame rate of the docu-

ment to 24 fps in the Property inspec-
tor. The animation is much smoother if
you use a higher frame rate such as 24
fps.

3	 Select Frame 1 of the Timeline and
add the following code to the Actions
panel:

 // Create a movie clip instance.

this.createEmptyMovieClip(“img1_mc”,

10);

var mcl_obj:Object = new Object();

mcl_obj.onLoadInit = function (tar-

get_mc:MovieClip):Void {

 target_mc._x = Stage.width;

 target_mc.onEnterFrame = func-

tion() {

 target_mc._x -= 3; // decrease

current _x position by 3 pixels

 if (target_mc._x <= 0) {

fi
g

u
re

 4

12 • 2005 mxdj.com • 23

 target_mc._x = 0;

 delete target_

mc.onEnterFrame;

 }

 };

};

var img_mcl:MovieClipLoader = new

MovieClipLoader();

img_mcl.addListener(mcl_obj);

 // Load an image into the movie

clip

img_mcl.loadClip(“http://www.helpex-

amples.com/flash/images/image1.jpg”,

img1_mc);

	 This code example loads an external
image from a remote web server and,
when the image is fully loaded, animates
it horizontally across the Stage. Instead
of using an onEnterFrame event handler,
you could use the setInterval() function to
animate the image.
4	 Select Control > Test Movie to test the

document. The image loads and then
animates from the right side of the
Stage to the upper-left corner of the
Stage.

Using the Tween and
TransitionManager Classes
	 When you install Flash Basic 8 or
Flash Professional 8, you also install
two powerful classes: the Tween and
TransitionManager classes. This section
describes how to use these classes with
movie clips and Macromedia V2 compo-
nents (included with Flash MX 2004 and
Flash 8) to add animation easily to your
SWF files.
	 If you create a slide presentation or
form application with Flash Professional
8 (ActionScript 2.0 only), you can select
behaviors that add different kinds of tran-
sitions between slides, which is similar to
when you create a PowerPoint presenta-
tion. You add this functionality into a
screen application by using the Tween
and TransitionManager classes, which
generate ActionScript that animates the
screens depending on the behavior you
choose.
	 You can also use the Tween and
TransitionManager classes outside of
a screen-based document in either
Flash Basic 8 or Flash Professional 8. For
example, you can use the classes with
the component set of version 2 of the
Macromedia Component Architecture, or

with movie clips. If you want to change
the way a ComboBox component ani-
mates, you can use the TransitionManager
class to add some easing when the menu
opens. You can also use the Tween and
TransitionManager classes, instead of cre-
ating motion tweens on the Timeline or
writing custom code, to create your own
animated menu system.

	 Note: The Tween and

TransitionManager classes are available

only in ActionScript 2.0, but these classes

are available in both Flash Basic 8 and

Flash Professional 8.

Tween Class
	 The Tween class enables you to use
ActionScript to move, resize, and fade
movie clips easily on the Stage by specify-
ing a property of the target movie clip to be
tween-animated over a number of frames or
seconds. The Tween class also enables you to
specify a variety of easing methods. Easing
refers to gradual acceleration or deceleration
during an animation, which helps your ani-
mations appear more realistic. For example,
the options on a drop-down list component
you create might gradually increase their
speed near the beginning of an animation
as the options appear, but slow down before
the options come to a full stop at the end of
the animation as the list is extended. Flash
provides many easing methods that contain
equations for this acceleration and decelera-
tion, which change the easing animation
accordingly.
	 The Tween class also invokes event
handlers so your code may respond when
an animation starts, stops, or resumes or
increments its tweened property value.
For example, you can start a second
tweened animation when the first tween
invokes its Tween.onMotionStopped
event handler, indicating that the first
tween has stopped.

TransitionManager Class
	 The TransitionManager class and the
effect-defining transition-based classes
enable you to apply impressive transition
animation effects quickly to slides and
movie clips.
	 As its name implies, the
TransitionManager class manages transi-
tions by implementing animation events.
It enables you to apply one of 10 anima-
tion effects to movie clips. The transition

effects are defined in a set of transition
classes that all extend the base class
mx.transitions.Transition.

Combining Animation,
Filters, and the Tween Class
	 You can use ActionScript, such as the
Tween class, to animate filters at runtime,
which enables you to apply interesting,
animated effects to your Flash applica-
tions. In the following example, you see
how to combine the Blur filter with the
Tween class to create an animated blur
that modifies the Blur filter between a
value of 0 and 10 at runtime.
	 To animate blurs using the Tween
class:
1	 Create a new Flash document and save

it as animatedfilter.fla.
2	 Add the following ActionScript to

Frame 1 of the Timeline:

import flash.filters.BlurFilter;

import mx.transitions.Tween;

import mx.transitions.easing.*;

this.createEmptyMovieClip(“holder_mc”,

10);

holder_mc.createEmptyMovieClip(“img_

mc”, 20);

var mclListener:Object = new Object();

mclListener.onLoadInit =

function(target_mc:MovieClip) {

 target_mc._x = (Stage.width - tar-

get_mc._width) / 2;

 target_mc._y = (Stage.height - tar-

get_mc._height) / 2;

 var myTween:Tween = new

Tween(target_mc, “blur”, Strong.easeI-

nOut, 0, 20, 3, true);

 myTween.onMotionChanged = func-

tion() {

 target_mc._parent.filters =

[new BlurFilter(target_mc.blur, tar-

get_mc.blur, 1)];

 };

 myTween.onMotionFinished = func-

tion() {

 myTween.yoyo();

 }

};

var my_mcl:MovieClipLoader = new

MovieClipLoader();

my_mcl.addListener(mclListener);

my_mcl.loadClip(“http://www.helpex-

amples.com/flash/images/image1.jpg”,

holder_mc.img_mc);

Macromedia Instructional

Media Development

(IMD) is a team of

instructional designers,

developers, technical

writers, technical editors,

publishing engineers,

and multimedia artists.

IMD authors the online

help systems, manuals,

tutorials, and examples

that help customers learn

how to use Macromedia

products. Jen deHaan,

a rather awkward and

uncool Canadian, likes

robots and pirates (as well

as robotic pirates). Jen

works on documentation

at Macromedia in San

Francisco. She also main-

tains a blog at weblogs.

macromedia.com/dehaan

and believes that _root

and low-carb diets are

unusually evil. Chris

Georgenes is a full-time

freelance artist, animator,

and all-around designer

for the web, CD-ROM,

and television. His clients

include Pileated Pictures,

LucasArts, Universal

Records, Plot Developers,

and AOL, among others.

He maintains www.mud-

bubble.com as his online

portfolio and www.key-

framer.com as his Flash

tutorial website. Chris is

also a member of Team

Macromedia.

24 • mxdj.com 12 • 2005

	 The preceding code is separated into
three sections. The first section imports
the required classes and packages.
The second section creates a nested
movie clip that is used to load an image
and apply filters to the holder movie
clip. The final section creates a new
MovieClipLoader instance and a listener
for the movie clip loader.
	 The listener object defines a single
event handler function, onLoadInit, which
is started once the image successfully
loads and is available on the Stage. First
the image is repositioned to the center of
the Stage and then a new Tween object is
created that animates the movie clip and
applies a Blur filter of 0 and 10.
3	 Select Control > Test Movie to test the

Flash document.

Combining Animation and
the Drawing API
	 You can combine the Drawing API
with the Tween and TransitionManager
classes to create some excellent ani-
mated results, and you only have to
write a small amount of ActionScript.
For more information on the Tween
and TransitionManager classes, see the
previous section, Using the Tween and
TransitionManager Classes.
	 The following procedure loads a JPEG
image and dynamically masks the image
so you can reveal the image slowly after it
loads by tweening the image’s mask.

	 To animate dynamic masks:
1	 Create a new Flash document and save

it as dynmask.fla.
2	 Add the following ActionScript to

Frame 1 of the Timeline:

import mx.transitions.Tween;

import mx.transitions.easing.*;

var mclListener:Object = new Object();

mclListener.onLoadInit =

function(target_mc:MovieClip) {

 target_mc._visible = false;

 // Center the image on the Stage.

 target_mc._x = (Stage.width - tar-

get_mc._width) / 2;

 target_mc._y = (Stage.height - tar-

get_mc._height) / 2;

 var maskClip:MovieClip = target_mc.

createEmptyMovieClip(“mask_mc”, 20);

 with (maskClip) {

 // Draw a mask that is the same

size as the loaded image.

 beginFill(0xFF00FF, 100);

 moveTo(0, 0);

 lineTo(target_mc._width, 0);

 lineTo(target_mc._width, tar-

get_mc._height);

 lineTo(0, target_mc._height);

 lineTo(0, 0);

 endFill();

 }

 target_mc.setMask(maskClip);

 target_mc._visible = true;

 var mask_tween:Object = new

Tween(maskClip, “_yscale”, Strong.

easeOut, 0, 100, 2, true);

};

this.createEmptyMovieClip(“img_mc”,

10);

var img_mcl:MovieClipLoader = new

MovieClipLoader();

img_mcl.addListener(mclListener);

img_mcl.loadClip(“http://www.helpex-

amples.com/flash/images/image1.jpg”,

img_mc);

	 This code example imports the Tween
class and each of the classes in the eas-
ing package. Next it creates an object
that acts as the listener object for a
MovieClipLoader instance that’s created
in a later section of the code. The listener
object defines a single event listener,
onLoadInit, which centers the dynami-
cally loaded JPEG image on the Stage.
After the code repositions the image, a
new movie clip instance is created within
the target_mc movie clip (which contains
the dynamically loaded JPEG image). The
Drawing API code draws a rectangle with
the same dimensions as the JPEG image
within this new movie clip. The new movie
clip masks the JPEG image by calling the
MovieClip.setMask() method. After the
mask is drawn and set up, the mask uses
the Tween class to animate, which causes
the image to slowly reveal itself.
3	 Save the Flash document and select

Control > Test Movie to test the SWF
file.

	 Note: To animate _alpha in the previ-

ous example instead of _yscale, tween the

target_mc movie clip directly instead of the

mask movie clip.

	 You can use alpha masks if you
apply runtime bitmap caching. See an
sample FLA file demonstrate this fea-
ture on the Flash Samples page (http://
macromedia.com/support/documenta-
tion/en/flash/fl8/samples.html#alpha_
mask).

Instructional Media Development (IMD)

Macromedia Documentation

Editor: Jen deHaan

www.flash8forums.com

Reviewer: Chris Georgenes

www.mudbubble.com

fi
g

u
re

 5

26 • mxdj.com 12 • 2005

s most of you know, Flash
began as a tool for creating
vector animations on the web.

Flash Player was designed specifically as
a lightweight animation viewer to display
moving vector objects, which are, in their
simplest form, mathematical equations
that describe complex shapes made up of
points, lines, curves, and fills.
	 However, today, developers and
designers use Flash to do a lot more than
just animation; today, we use Flash for
everything from interactive banner ads to
games and large applications with com-
plex user interfaces. We are now pushing
Flash to its limits, and our frame rates are
starting to suffer as we develop content
that is more application-centric.
	 Previous versions of Flash Player
showed some obvious performance
limitations. The vector renderer inside
the player generally coughed and splut-
tered when it attempted to play Flash
applications with a lot of objects on the
Stage. This is because the player was not
optimized to deal with large amounts of
static content. By design, on each frame,
Flash Player 7 and previous versions
had to update and redraw all the vector
objects on the Stage, even if they had
not changed. This was an intensive and
unnecessary process.
	 Flash Player 8 addresses these visual
performance issues with various improve-
ments and optimizations to the renderer.
There are also various new performance-
enhancing authoring features in Flash
Professional 8, which developers can use
to take advantage of these significant
changes.
	 This article will show you how to
effectively use these new performance-
related features to increase the frame
rates of your Flash applications. An
intermediate to advanced familiarity with

ActionScript and Flash Player functional-
ity is required.

Bitmap Caching
	 One of the most significant additions
to Flash Player 8 has to be bitmap cach-
ing. This feature gives developers that are
experiencing poor frame rates the power
to greatly increase the speed at which
large amounts of objects are updated
and drawn onto the Stage by the ren-
derer. The renderer is a very important
part of Flash Player; it is responsible for
everything that you see when you view a
Flash application, as it draws all the vec-
tor and bitmap data onto the Stage. On
each frame, the renderer has to update
the Stage and the various objects it con-
tains to reflect any changes that have
occurred since the last frame. This process
can become quite intensive when the
application updates a large amount of
information on any given frame. Using
this feature gives the developer some
control over the amount of work that the
renderer has to perform in each frame
– the less work you give the renderer, the
faster and smoother your Flash applica-
tion will run.

How Bitmap Caching Works
	 When you turn on bitmap caching
for any given movie clip, the player con-
verts the contents of the movie clip into
a bitmap, which it generates and then
stores in memory alongside the original
vector data equivalent. The renderer then
displays this bitmap in the place of the
vector data by copying the image from
memory onto the Stage.
	 This process essentially makes the
renderer’s life easier, because it doesn’t
have to update the movie clip each
frame. Instead the process only has to
draw the bitmap it generated once, and

from then on it simply copies the bitmap
from memory onto the Stage. If you
change the movie clip or its contents,
Flash regenerates the bitmap. There
is little or no visual difference when a
movie clip has bitmap caching turned on.
You may notice a very slight difference
because the vector data is snapped to
the nearest whole pixel when the bitmap
is generated. Bitmap caching also works
perfectly well with nested movie clips
(movie clips inside movie clips).
	 To put it in simple terms, by turning
on bitmap caching for a movie clip, you
are essentially telling Flash Player, “Hey
Renderer, I’ll make your life a little easier.
Freeze this movie clip and display it as a
bitmap instead, because this movie clip
or its contents are not going to change
very often, if at all. They are static.”

Turning Bitmap Caching On
and Off
	 Bitmap caching comes in the form of
an additional movie clip property that
can be switched on or off at author-time
using the Property inspector and at run-
time using ActionScript, on a per movie
clip basis.

Using the Authoring
Environment
	 You can turn bitmap caching on or
off for any movie clip in the authoring
environment using the Property inspec-
tor. Selecting this option disables bitmap
caching for all movie clips by default.
	 To turn bitmap caching on select the
desired movie clip instance on Stage by
clicking on it. Then, open the Property
Inspector from the Window menu. Select
Window > Properties > Properties, or use
the keyboard shortcut Control + F3.
	 In the lower right corner of the
Property inspector underneath the Blend

Using Bitmap Caching in Flash

Developers and designers use Flash
to do a lot more than just animation

by guy watson

interactive

a

28 • mxdj.com 12 • 2005

field, select the Use Runtime Bitmap
Caching option for the selected movie
clip by clicking the checkbox. Bitmap
caching is deselected or turned off by
default for all movie clips.

Using ActionScript
	 You can also turn bitmap caching on
and off at runtime using ActionScript.
Every movie clip object now has a new
ActionScript property called cacheAs-
Bitmap. To turn bitmap caching on for
a movie clip, you simply need to set the
value of its cacheAsBitmap property to
true using the following code:
someMovieClip.cacheAsBitmap=true;
//Turn Bitmap Caching ON
	 Similarly, to turn bitmap caching off
for a movie clip using ActionScript, you
simply need to set the value of its cache-
AsBitmap property to false as follows:
someMovieClip.cacheAsBitmap=false;
//Turn Bitmap Caching OFF
	 You can also determine if a movie clip
has bitmap caching turned on by retriev-
ing the value of the cacheAsBitmap prop-
erty:

isCached=someMovieClip.cacheAsBitmap;

When to Use Bitmap
Caching
	 If used correctly, bitmap caching can
dramatically reduce the amount of updat-
ing instructions that the renderer has to
process in every frame, and your applica-
tions should, in practice, run a lot quicker
and smoother. However, in certain cir-
cumstances bitmap caching could have
a detrimental effect on the performance
of your Flash application, therefore you
should choose the movie clips you cache
wisely.
	 Bitmap caching works best for movie
clips whose visual appearance doesn’t
change often or not at all. This is because
when a cached movie clip or its contents
change, Flash regenerates the bitmap
with new data for the area or region of
vector data that changed and updates

the bitmap held in memory. The renderer
then displays the new bitmap.
	 Bitmap caching also works well for
movie clips that contain complex vector
data (for example, shapes with lots of
curves or gradient fills), as it is quicker
for the renderer to copy a bitmap from
memory onto the Stage than to draw all
those vectors to the Stage.
	 Every time you rotate, scale, or
change the alpha of a cached movie clip,
the whole bitmap has to be regener-
ated. So, turning on bitmap caching for
a movie clip that is constantly rotating,
changing in size, or contains an anima-
tion doesn’t make much sense because in
every frame the renderer has to update
the bitmap to reflect the new appearance
of the movie clip as well as redraw it to
the Stage, which adds overhead.
	 On the other hand, bitmap caching
works well for both static movie clips and
movie clips that move, as long as they
don’t change visually. It is perfectly fine
to move a cached movie clip around the
Stage, either with ActionScript or with
Timeline animation, because moving it
around won’t change its visual appear-
ance. The cached bitmap doesn’t have to
be updated, and the renderer will merely
draw the bitmap at its new position.

Valid Use-Case Scenario
	 Consider the following use-case sce-
nario: you have a large application that
contains multiple Window components;
each Window component contains numer-
ous other components. Each Window
component is draggable. When the user
drags one of the Window components
around the application, he notices a
slowdown—the Window component has
to catch up to the mouse position, which
causes jerky movement. To fix this prob-
lem, the developer turns on bitmap cach-
ing for each Window component instance.
Now the player only has to update the
internal bitmap representation of each
Window component when the visual
appearance of one of the UI components

inside it changes. The rest of the time
– even when the Window component is
being dragged around – the player simply
needs to move the bitmaps around the
Stage, as opposed to constantly updating
the Stage from the vector data in each
movie clip. The result is a much smoother
dragging experience for the user.

When Are Surfaces
Regenerated?
	 As stated previously, changes to a
movie clip that make the player regener-
ate the internal bitmap representation
should be used sparingly; otherwise you
defeat the purpose of the feature. With
bitmap caching on for a movie clip, Flash
Player will regenerate the bitmap every
time you change any of the following
MovieClip ActionScript properties:
• 	 _xscale
• 	 _yscale
• 	 _rotation
• 	 _alpha
• 	 _width
• 	 _height
• 	 filters
• 	 blendMode
• 	 opaqueBackground
• 	 transform

	 So, when using bitmap caching, try to
avoid changing any of these ActionScript
properties on a regular basis.
	 The bitmap will also be regenerated
when:
• 	 The Timeline playhead changes inside

the movie clip
• 	 When the outer boundaries of the

movie clip change
• 	 When you draw something inside the

movie clip with the Drawing API
• 	 When you attach an image or symbol

from the Library into the movie clip
• 	 Any of the above occur within a nested

movie clip (child movie clip)
• 	 The movie’s viewing window changes

(for example, the viewer zooms in on
the movie by right-clicking and choos-
ing Zoom)

“We are now pushing Flash to its limits, and our
frame rates are starting to suffer as we develop
content that is more application-centric”

12 • 2005 mxdj.com • 29

Bitmap Caching and
Memory Usage
	 Bitmap caching naturally makes Flash
Player use more memory, because for
every cached movie clip the player has to
store the vector data and the additional
bitmap equivalent in memory. When you
turn bitmap caching off for any particular
movie clip, Flash removes its bitmap rep-
resentation from memory.
	 You should be concerned about the
amount of memory that your Flash file
uses, because it can affect the perfor-
mance of other applications that are
running on the same computer. The more
memory Flash Player uses, the less mem-
ory that is available for other programs to
run effectively.
	 Computers only have so much
memory available to them in the form
of RAM. Most computers nowadays have
at least 256MB of RAM. The operating
system may provide more memory when
required in the form of virtual memory.
Flash Player should never use that much
memory, but now, with the various new
bitmap-related features added to the
player, Flash files can consume large
amounts of memory at a time, so you
should make an effort to minimize mem-
ory usage.
	 Before we talk about the specifics
of bitmap caching and memory usage,
here’s a little background information. As
you probably know, a bitmap is made up
of pixels. It can be thought of as a grid of
color values, which designate a particular
color for each and every pixel. Each pixel
is a cell in the grid. A 100 x 100 pixel bit-
map can be described by a grid of 10,000
color values, one for each pixel.
	 Each color value in a bitmap is a
binary number. A binary number is made
up of bits, whose values can be either
0 or 1. This binary number will differ in
length, depending upon the color depth
of the bitmap. The color depth of a bit-
map determines the range of possible
color values that can be used in each
pixel. For example, each pixel in a 24-bit

image can be one of roughly 16.8 million
colors. Those colors are formed by mix-
ing together varying quantities of three
primary colors: red, green, and blue. The
three main colors are called channels. It
follows that:
• 	 Each channel can have 256 possible

values (0–255).
• 	 256 * 256 * 256 = 16.8 million
• 	 256 decimal is 11111111 in binary.
• 	 This binary number is 8 bits long. 8 bits

is 1 byte.

	 Therefore each channel in a color uses
1 byte. The bitmaps that are created by
Flash Player when it converts a movie
clip into a surface have a 32-bit color
depth. 32-bit images have four channels:
red, green, blue, and an additional alpha
channel.
	 Therefore the color value for each
pixel in a surface created by Flash Player
is 32 bits long, or 4 bytes.

4 * 8 = 32 bit

	 The bitmap that is created by Flash
Player to represent the visual state of a
movie clip when you turn bitmap caching
on will have the same dimensions (width
and height) as the movie clip.
	 A cached movie clip that is 100 x 100
pixels has 10,000 pixels.

100 * 100 = 10,000 pixels

	 Each of those pixels will be 32 bits or
4 bytes. Therefore the movie clip will use
an extra 40,000 bytes of memory.

10,000 * 4 = 40,000 bytes

	 There are 1024 bytes in 1 kilobyte (K).
So, 40,000 bytes can also be said to be
roughly 40 kilobytes (40K).

Built-in Rules for Bitmap
Caching
	 Flash guides you through best practic-
es of using bitmap caching through some

built-in restrictions. Basically, Flash Player
takes care of you by either turning on or
turning off bitmap caching automatically
in several important circumstances.

Size Limits
	 Because it can use excessive amounts
of memory, bitmap caching will not work
if the dimensions of a cached movie clip
are larger (or become larger) than 2880
pixels in either width or height. Flash
Player restricts you from using bitmap
caching for larger-than-2880 bitmaps to
minimize excessive memory use. Why?
Because a 2880 x 2880 pixel movie clip
that is cached will use up roughly 32MB
of memory. Four of these cached movie
clips with those same dimensions could
potentially fill up a computer’s memory
and crash the machine.

Filters
	 It is worth noting here, that if you
apply a filter effect to a movie clip either
in the Flash authoring environment or
through ActionScript, then bitmap cach-
ing is automatically turned on, and the
cacheAsBitmap property will always return
true. This happens even if you turned
bitmap caching off—either in the author-
ing environment or with ActionScript. To
prove this, create a new movie clip, give
it an instance name of scrollingMovieclip,
and add the following code to the first
frame of the main Timeline:

var blur=new flash.filters.

BlurFilter(3,3,3); //Gaussian blur

scrollingMovieclip.filters=[blur];

trace(scrollingMovieclip.cacheAsBit-

map); //outputs ‘true’

	 When all of the filters effects are
removed from a movie clip, the cacheAs-
Bitmap property will return to its previous
state. So for example, if bitmap caching
is turned off for a movie clip but it has
filters applied to it, then removing all of
those filters from the movie clip will turn
bitmap caching off again:

fi
g

u
re

 1

30 • mxdj.com 12 • 2005

COPYRIGHT ©2006 SYS-CON MEDIA ALL RIGHTS RESERVED NOTE: SPEAKER LINE-UP SUBJECT TO CHANGE WITHOUT NOTICE

2 3

scrollingMovieClip.filters=undefined;

trace(scrollingMovieclip.cacheAsBit-

map); //outputs ‘false’

Loading External Content
	 When you load an external Flash
movie or image into a cached movie clip
using ActionScript, bitmap caching is
automatically turned off. This is because
when Flash loads a movie clip, it totally
resets it, deleting all variables inside it,
removing all child movie clips, and set-
ting all movie clip properties back to their
default values.
	 To prove it, try the following code:

/*

	 This code fixes the onLoad bug, that is
that anyMovieclip.onLoad event handler
is deleted when loading external content
into a movie clip:

*/

_global.s_onLoad=function(f)

{

 if(onLoadManager == undefined)

 {

 _global.onLoadManager={};

 }

 onLoadManager[this] =f;

}

_global.g_onLoad=function()

{

 return onLoadManager[this];

}

MovieClip.prototype.

addProperty(‘onLoad’, g_onLoad, s_

onLoad);

this.createEmptyMovieClip(“scrollingMo

vieclip”,this.getNextHighestDepth());

scrollingMovieclip.onLoad=function()

{

 trace(this.cacheAsBitmap);

//when the photo is loaded, show that

bitmap caching was turned off

}

scrollingMoveclip.cacheAsBitmap=true;

scrollingMovieclip.loadMovie(“photo.

jpg”);

Collision Detection
	 Finally, results from hit-testing code
using MovieClip.hitTest will not be
affected by bitmap caching, as hit-test-
ing is still calculated based upon the
vector data of a movie clip, not the gen-
erated bitmap that you actually see. To
prove this, create a new movie clip and
draw a circle inside it, drag it onto the
first frame of the main Timeline, and give
it an instance name of circle_mc. Now
add the following code to the first frame
of the main Timeline:

circle_mc.onMouseMove=function()

{

 trace(“hit: “+this.hitTest(_

root._xmouse,_root._ymouse,true));

}

circle_mc.cacheAsBitmap=true;

Where to Go from Here
	 As you can see, if used correctly, bit-
map caching is a powerful tool for man-
aging graphics performance. Here are
some more resources for you to check
out as you start playing around more
with creating graphic effects using
Flash 8.
• 	 Flash Graphic Effects Center: www.

macromedia.com/devnet/flash/graph-
ic_effects.html

• 	 Flash Graphic Effects Learning Guide:
www.macromedia.com/devnet/flash/
articles/graphic_effects_guide.html

	 As you become more advanced,
there are a few more articles you should
check out, including a couple that I’ve
written:
• 	 Introducing the Image API in Flash 8:

www.macromedia.com/devnet/flash/
articles/image_api.html

• 	 Webcam Motion Detection: www.mac-
romedia.com/devnet/flash/articles/
webcam_motion.html

	 Also, Grant Skinner has written a
couple of very useful articles you can dive
into:
• 	 Varicose-g Example: www.macrome-

dia.com/devnet/flash/articles/vari-
cose_g.html

• 	 Using Bitwise Operators to Manipulate
Bits and Colors: www.macromedia.
com/devnet/flash/articles/bitwise_
operators.html

	 Grant and I also both regularly update
our blogs, which contain useful informa-
tion for Flash developers:
• 	 My FlashGuru Consulting Blog: www.

flashguru.co.uk/
• 	 Grant Skinner’s Blog: www.gskinner.

com/blog/

	 Finally, Flash engineer Tinic Uro often
posts critical information for those devel-
opers who want to get inside what makes
Flash tick and how to best take advan-
tage of it:
• 	 Tinic Uro’s blog: www.kaourantin.net/

	 I hope this article helps you manage
your memory and performance and gets
you on the way to optimizing your frame
rates. Stay tuned to the Developer Center
(www.macromedia.com/devnet/) and to
my website (www.flashguru.co.uk/)for
more articles about Flash and graphic
effects.

This article originally appeared in the

Macromedia Developer Center, www.

macromedia.com/devnet/flash/articles/bit-

map_caching.html.

Guy Watson is the managing director of

FlashGuru LTD, a Flash development

consultancy company based in London,

England. Guy has delivered presenta-

tions at various Flash industry events

worldwide and has also won numer-

ous industry awards for his work. He

maintains the popular Flash resource

website, FlashGuru’s Knowledge Base

(http://www.flashguru.co.uk/). www.

flashguru.co.uk

“When you load an external Flash movie or image
into a cached movie clip using ActionScript,

bitmap caching is automatically turned off”

32 • mxdj.com 12 • 2005

C
O

P
Y

R
IG

H
T

 ©
20

06
 S

Y
S

-C
O

N
 M

E
D

IA

 A
LL

 R
IG

H
T

S
 R

E
S

E
R

V
E

D

recently presented a “high order
bit” at the Web 2.0 conference
about how Flash and HTML work

together and made some announce-
ments about building Flash applications
in a way developers can relate to more
easily.
	 Tim O’Reilly wrote a great overview
of what he means by Web 2.0, which
are essentially design patterns and busi-
ness models for the next generation of
software. The shorter term results are
things like easier sharing of photos with
your friends and family, finding the most
interesting things to read, and getting
new insights on information by combin-
ing data like rental listings with their
locations on a map. Longer term, this
“architecture of participation” could mean
harnessing collective intelligence across
the Internet to solve increasingly difficult
problems around the world, as also envi-
sioned by Doug Engelbart.
	 In terms of building applications for
Web 2.0, I believe the key underlying
theme is the separation of data and user

interface through open data formats,
RSS/Atom feeds, and programming
interfaces made publicly available. This
enables not only a revolution in machine
to machine communication, as all the
excitement about web services has been
about, but also human to machine as
we’re seeing with remixing applications
and new user interfaces on data.
	 There is clearly a resurgence in how
HTML can be used to deliver application
user interfaces and terrific progress has
been made on that. In addition, Flash
brings capabilities that HTML doesn’t
currently have, and they can be used
together to great benefit -- in fact, Flash
has already been architected to fit per-
fectly in the Web 2.0 model. For example,
Adaptive Path has been working on a
great new application called MeasureMap
that helps people track traffic on their
blogs and is being built with a combina-
tion of HTML and Flash on the client.
Another is how Flickr is using both HTML
and Flash, for example implementing
the organizer and slideshow with Flash

and the photo index with HTML. The
language in Flash is ActionScript which
is the same as JavaScript, both ECMA
standard languages, and it’s very simple
to call between code in HTML and Flash,
enabling smooth integration with a free
open-source integration kit. This is not
about Flash vs. HTML or Ajax. It’s using
Flash + HTML with the Ajax approach to
build Web 2.0 applications (to be fully
buzzword compliant).
	 There are many examples of applica-
tions built in Flash, though building them
is not what a lot of people would call easy
as the current Flash authoring tool and
programming model were optimized for
more creative uses such as animations.
What we’re working on now is a set of
technologies to make building applica-
tions and components much easier and
for the results to run much faster.
	 These technologies include the
upcoming Flash Player 8.5 which has a
new virtual machine that runs several
times faster – it has been in development
for over two years and is aimed squarely

Flash Is Your Friend
in Web 2.0

High order bit
by kevin lynch

blog

i

“There is clearly a resurgence
in how HTML can be used to

deliver application user
interfaces and terrific progress

has been made on that”
34 • mxdj.com 12 • 2005

at providing a high performance Web
2.0 client runtime with a just in time
compiler, runtime error checking, sup-
port for E4X (which makes XML a first
class data type in scripting so you can
easily use XML in code) and compliance
with the standard ECMA language defini-
tion. The second technology is the Flex
Framework, a programming model that
enables developers to use an XML based
language to build apps much more intui-
tively along with integrated scripting.
And third, a tool called Flex Builder that
is being developed on the Eclipse open
source framework, is designed for devel-
opers, combines code editing with visual
layout of applications, and has a compiler
built right in. For a demo of how quickly
you’ll be able to build applications with
this, please check out the video where
you can see a photo search app built in
about five minutes.
	 A major advantage of using the Flash
Player for Web 2.0 applications is con-
sistent development across operating
systems and browsers and a lot less over-
head programming around differences
and needing to debug and test on every
configuration. The Flash Player has more
reach than any browser or operating sys-
tem, and is being distributed faster than
any other technology I know of on the
Internet today which means innovation
on client technology can be deployed to
over 80% of people on the Web in about
a year and then reach 98% a little while
later.
	 This transformation of Flash from
purely an animation engine to a runtime
for rich media and rich internet applica-
tions has been happening for several
years now, though many people aren’t
yet aware of these capabilities. Some
things I find many people don’t real-

ize about Flash include: an active open
source community around Flash; support
for more sophisticated local storage than
what the browser provides along with
more control for users; Google does in
fact index Flash; two-way live audio/video
communication is built in along with sup-
port for synchronized data transmission
for collaborative apps; Flash supports
accessible applications including integra-
tion with screen readers; it’s actually the
most widely distributed video player
on the web; it supports sockets (which
enable push of data from servers rather
than the request-only model) in either
XML or with the new client in any binary
format.
	 Also, there is currently support for
integration with backend infrastructure
through web services or REST interfaces
from the Flash Player today. The new
Flash Player 8.5 has even stronger enter-
prise data connectivity, including client
support for Flex Enterprise Services,
which enables use of message queues,
integration with JMS, remote procedure
calls, and data synchronization. This
enables not only simple applications like
photo viewers, but also sophisticated
business applications.
	 We’re making this next generation
available in early stages so we can col-
laborate with the community around it
and make sure we’re all building the right
stuff. Alpha releases of Flash Player 8.5
and Flex Builder will be available for hack-
ing Web 2.0 applications starting at the
MAX developer conference on October
17 and posted at macromedia.com/go/
web2.

This blog is reprinted with the author’s per-

mission and appeared originally on www.

klynch.com.

“The new Flash Player 8.5 has
even stronger enterprise data
connectivity, including client support
for Flex Enterprise Services”

As senior vice president and chief software architect,

Kevin Lynch leads Adobe’s Platform Business Unit,

which is focused on advancing the company’s soft-

ware platform for the creation and delivery of engag-

ing applications and content to any desktop or device.

Lynch is responsible for the company’s ubiquitous

Portable Document Format (PDF), Adobe® Reader®,

and Macromedia® Flash® Player, as well as alignment

of Adobe’s servers and tools with the company’s

technology platform. Lynch also oversees Adobe’s

developer relations program, including the integra-

tion of customers and partners in the development

process through Adobe Labs and customer advisory

councils.

Lynch joined Adobe through the company’s 2005

acquisition of Macromedia, Inc., where he served

as chief software architect and president of product

development. He headed up the creation of the

company’s mobile and devices group and served as

general manager of the web publishing group. Lynch

also oversaw the initial development of Macromedia

Dreamweaver®, a leading web development product.

Before joining Macromedia in 1996, Lynch worked

for General Magic, where he pioneered a naviga-

tional user interface for handheld communicators.

Previously, he designed the user interface and devel-

oped the first Macintosh release of FrameMaker®

software for Frame Technology, later acquired by

Adobe. While at the University of Illinois, Lynch

developed early Macintosh applications, including

a desktop publishing program that introduced user

interface elements in common use today.

Lynch holds three patents with others currently pend-

ing, and he is actively involved in Adobe’s international

standards efforts with organizations such as the W3C,

ECMA and ISO. In 2003, he was named one of CRN’s

“Top 25 Innovators,” and was honored as one of the

“First Annual Web Innovators” by CNET in 1998.

Lynch studied interactive computer graphics at the

University of Illinois, working with artists and engineers

in the Electronic Visualization Laboratory.

12 • 2005 mxdj.com • 35

s with almost any program you
work with, there are going to
be things you wish you could

change, add, improve, or remove. It might
be a feature you are used to from another
program, or one you have devised on your
own. “If only I could run to the developers
and tell them my great idea, the program
would be perfect,” you say. I’ve often
wanted to change things in my favorite
software but am usually stuck waiting and
hoping it will be fixed in the next version.
	 Thankfully, sometimes there are alter-
natives. Extending Fireworks enables you
to create new features, tweaks, and modi-
fications. They can be as simple as setting
a few preferences or as complex as being
an entirely separate application. There are
several ways to extend Fireworks but they
all work towards the same goal: extend-
ing the capabilities of Fireworks and mak-
ing it work the way you want it to.
	 This article is intended for someone
with an interest in making commands
for Fireworks. It is a guide to help any-
one who has even a small amount of
programming knowledge to learn the
procedure for creating commands. The
first part of the article explains what com-
mands are, where they are stored, and
the different ways you can execute them.
It also explains some of the basic con-
cepts and structures of most Fireworks
commands. The middle part examines a
practical command example and discuss-
es where to look for more help. The last
section provides some advice for trouble-
shooting your commands as well as some
information about packaging and distrib-
uting them. After completing this article
you should have a good idea of what is
possible with Fireworks commands and
have an understanding of how to create
and package them.

Getting Started with Your
First Command
	 The fastest and simplest way to
extend Fireworks is by creating com-
mands. These are JavaScript files that give
you control over the internal functions
of Fireworks, extending the capabili-
ties of the program to suit your needs.
You control Fireworks by calling a set of
custom JavaScript functions from within
your commands using the Fireworks
Application Programming Interface
(API). Commands work by utilizing the
Fireworks API to control the functional-
ity of the program. They tap into all
Fireworks tools and features and allow
you to control them through code. View
the Fireworks 8 API documentation to
get a more complete overview of the
Fireworks Object Model and the custom
JavaScript functions that are built into
Fireworks.
	 Now that you have a basic under-
standing of what commands are and how
they work, it’s time to get started making
some of your own.
Hello World
	 The first command you make will
simply create a dialog box in Fireworks
that says “Hello World!” If you are familiar
with JavaScript, then the alert() function is
nothing new to you, but you will still learn
where to store your custom commands
and how to run them. First open Fireworks
and create a new document, approximate-
ly 500 pixels wide and 400 pixels tall.
	 Create a new text file in your text
editor of choice. Place this Fireworks com-
mand in it:

alert(“Hello World!”);

	 That’s it! Now save the command and
you’re done.

Saving Your Commands
	 There are a couple options available
for saving a command. If you are on a
single-user machine or want everyone
who uses your computer in a multiuser
environment to be able to access the
command, save it into your installation
folder’s Configuration\Commands sub-
folder:

(Windows) C:\Program Files\Macromedia\

Fireworks 8\Configuration\Commands

(Mac OS) Macintosh HD:Applications:
Macromedia:Fireworks 8:Configuration:
Commands

	 If you want to limit access to just to
your user name, save it here:

(Windows) C:\Documents and Settings\

<User Name>\Application Data\

Macromedia\Fireworks 8\Commands

	 (Mac OS) Macintosh HD:Users:<User>:

Library:Application Support:

Macromedia:Fireworks 8:Commands

	 Save the file as Hello World.jsf.

Testing Your Commands
	 After your command is saved, switch
to Fireworks to test it. If you go to the
Commands pop-up menu, there should
be a new entry for the “Hello World” com-
mand you just saved. Click on it now to
run the command. If you see a message
box that says “Hello World!” then the com-
mand ran successfully. If you see a mes-
sage box that says “Can not run the script.
An error occurred.” that means there is a
problem with the script and you should
switch back to your text editor and make

Programmer’s Guide to
Fireworks Commands

Getting started with your first command
by dustin dupree

commands

a

36 • mxdj.com 12 • 2005

sure you wrote the code correctly.
	 There are a couple of other options
available for running commands in
Fireworks:
• 	 You can drag and drop .jsf files into

Fireworks to run them; just make sure
you drop them anywhere except the
active document workspace.

• 	 In Windows you can run commands
by setting .jsf files to open with
Fireworks (assuming they aren’t
already set by default). Right-click the
“Hello World.jsf” file in the Fireworks
8\Configuration\Commands folder
and select Open With from the con-
text menu. A dialog box should open,
showing Fireworks as the recom-
mended application. If not, click the
Browse button to find Fireworks.exe in
your installation folder (usually it’s C:\
Program Files\Macromedia\Fireworks
8). Make sure to select the option that
says “Always use the selected program
to open this kind of file.” Now simply
double-click “Hello World.jsf” to run it
on the active Fireworks document.

Using the Fireworks API for
Your Second Command
	 Hello World wasn’t all that much fun
but at least now you know how to create,
save, and run a command. This time let’s
utilize some more interesting functions
in the Fireworks API to make a simple
command that contains more Fireworks-
specific code.
Hello Universe
	 Make a new document in your text
editor and save it to the commands folder
as “Hello Universe.jsf”. Copy the following
command code:

var dom = fw.getDocumentDOM();

dom.addNewRectangle({left:10, top:10,

right: 150, bottom: 45}, .25);

fw.selection[0].pathAttributes.fill-

Color = “#FF0000”;

var stored_selection = new Array();

stored_selection.push(fw.selec-

tion[0]);

dom.addNewText({left:25, top:20,

right: 140, bottom: 30}, false);

var tr = fw.selection[0].textRuns;

tr.textRuns = [{changedAttrs:

{fillColor:”#FFFFFF”, size: “16pt”},

characters: “Hello Universe!”}];

fw.selection[0].textRuns = tr;

stored_selection.push(fw.selec-

tion[0]);

fw.selection = stored_selection;

dom.group();

	 The first line of code uses the get-
DocumentDOM() method of the fw
object. You can think of the fw object as
a code representation of the Fireworks
application itself. It contains the function-
ality and methods for the common tasks
that Fireworks performs, such as Save
Document, Save As, Export, and even
Quit. The getDocumentDOM() method
returns the Document Object Model
(DOM) for the active document.
	 The document’s DOM is stored into
the dom variable to be used later in the
command. The document’s DOM can be
thought of as a code representation of
the active document in Fireworks. Any
action you would perform on a docu-
ment in Fireworks is handled by methods
of the document’s DOM, such as creating
a rectangle, adding a text object, and
arranging layers.
	 Once the document’s DOM is stored
into a variable, you can start using it to
control the active document. In the sec-
ond line of code, the addNewRectangle()
method creates a new rectangle in the
current document. The first argument
being passed is an object conforming
to the Rectangle data type, as specified
in the Fireworks 8 API documentation.
The Rectangle data type provides the
information to place the rectangle (top,
left) and define its dimensions (right, bot-
tom). The second argument defines the
roundness of the rectangle’s corners—a
number between 0 (no roundness) and 1
(maximum roundness).
Working with Selections
	 Working with selections is a very
important part of writing Fireworks
commands. Selections enable the users
of your command to choose which
objects(s) inside a document to affect,
and they enable you as a developer to
work with the objects that you create
programmatically. When a command
is invoked, the fw.selection array can
be used to access each selected object
inside the active document. At any given
point in the command, the fw.selection
array holds the currently selected objects,
whether there are zero or 20. When a new
object is created, like the rectangle cre-
ated in line 2, it is automatically selected.

It is easy to change the properties of
a selected object by accessing them
through fw.slection[0], as in line 3 where
the rectangle’s fill color is set to bright
red. After creating a new Text object on
line 6, it can be manipulated the same
way by accessing it with fw.selection[0].
	 You can set a selection by assign-
ing an object to fw.selection. To select
multiple objects, create an array like
stored_selection on line 4. You can add
objects to the array and easily select the
object’s later in the command by over-
writing the fw.selection array with the
array of objects. There are other ways to
make selections, too, by using the dom.
selectAll() and dom.selectAllOnLayer()
functions.

The API Documentation
	 If you haven’t done so already, you
should look over the Fireworks 8 API
documentation. It would be a good idea
to download a copy of the PDF version
(ZIP, 1.2 MB) to your hard drive for refer-
ence purposes as you make your own
commands. It explains all the objects and
functions available to you as a Fireworks
command developer. Here is a list of parts
in the API documentation to pay close
attention to:
• 	 Fireworks Object Model > Objects

Within Fireworks Documents: This sec-
tion describes the objects that can be
inside a Fireworks document. It is a
great reference for looking up object
structures. Pay particular attention to
the “Notes” column where you can find
more information about each property.

• 	 Fireworks Object Model > Core
Objects: This section includes object
descriptions for the six core objects:
Dialogs, Document, Errors, Files, Find,
and System. These objects are acces-
sible from anywhere within your com-
mand.

• 	 Fireworks Object Model > Working
with Selected Objects: This section cov-
ers what properties can be accessed
from selected elements.

• 	 Fireworks JavaScript API > Document
Functions: This section lists all meth-
ods available to an instance of the
Document Object Model retrieved
by fw.getDocumentDOM(). The argu-
ments section of each method descrip-
tion mentions any special objects that
the method is expecting as an argu-

12 • 2005 mxdj.com • 37

ment (see “Objects Within Fireworks
Documents” for reference). These
methods are specific to an individual
document within Fireworks.

• 	 Fireworks JavaScript API >
Fireworks Functions: This section
lists all methods of the fw object.
These methods perform similar
tasks to those found in the top-
level menus in Fireworks, incliuding
saving documents, setting prefer-
ences, and exporting images.

Looking at Real-World
Commands
	 After reading the Fireworks API docu-
mentation (or at least skimming through
it) you should have a good idea of what
you can achieve with Fireworks com-
mands. Looking through the methods of
the DOM and the fw object will show you
exactly what functionality you have con-
trol over using commands. With a basic
understanding of how commands work
and what options are available, you can
accomplish a lot.

Copy Primitive Fill
	 The Copy Primitive Fill command is a
simple command that copies the fill color
of a selected primitive to the Clipboard.
It is called “Copy Primitive Fill.jsf” in the
sample files. The command looks like this:

var dom = fw.getDocumentDOM();

if(fw.selection.length > 0) {

 var sel = fw.selection[0];

 if(sel.pathAttributes.fill) {

 copyToClipboard(sel.pathAttrib-

utes.fillColor);

 } else {

 alert(“There is no fill color

on this object!”);

 }

 fw.selection = sel;

} else {

 alert(“There must be an object

selected to run this command.”);

}
function copyToClipboard(txt){

 dom.addNewText({left:1, top:1,

right:1, bottom:1}, true);

 var tr = fw.selection[0].textRuns;

 tr.textRuns = [{changedAttrs: {},

characters: txt}];

 fw.selection[0].textRuns = tr;

 dom.clipCut(fw.selection[0]);

}

	 The Copy Primitive Fill com-
mand begins by getting the active
document’s DOM to use later on. After
that it checks to see whether the user
has made a selection. It then either
executes the command or alerts the
user that an object must be selected.
This is a common structure for many
commands that require a selection to
be made before the command can be
executed.
	 Sometimes things don’t go accord-
ing to plan when you create a com-
mand. The Copy Primitive Fill command
is a case in point. Because there is no
copyToClipboard() function in the API,
a function had to be created using a
combination of whatever functions
were available. As luck would have it,
using clipCut() on a text object cop-
ies the object’s text to the Clipboard;
otherwise this Copy Primitive Fill com-
mand wouldn’t be possible. For a more
in-depth version of this command,
which copies the fill from more complex
objects, see the “Copy Fill Color.jsf” com-
mand in the sample files.

Learning by Example
	 One of the best ways to learn how to
make a Fireworks command is by looking
at the different ways that other people
have done it. When you install commands
from .mxp extensions, they are just cop-
ied into your Fireworks 8/Configuration/
Commands folder as .jsf files. What this
means is that you can open the .jsf files
and view or edit the command’s code
the same way you would your own! If
you ever find yourself stuck creating
part of a command, chances are good
that someone has already found a solu-
tion for a similar problem. You might be
able to find a better way to accomplish a
certain task by looking at other people’s
commands, even if those commands
don’t necessarily produce the exact
same results that you want, they may
offer some alternative ideas or helpful
pointers. If you are creating a command
that requires grouping objects and you
have used a command that also groups
objects, it is very likely that the code for
grouping objects can be found within the
command.

Using the History Palette
	 One great way to learn a few

things about commands is by using
the History palette. Many people who
use it don’t realize how helpful it can
be when writing your own Fireworks
commands. Clicking the Copy Steps to
Clipboard icon in the lower right corner
of the History palette copies the actual
code for performing the selected task
to the Clipboard. If your command
requires something like creating a slice,
then instead of digging through the
API to find the correct function, you
can just create a slice in Fireworks, copy
the “slice tool” entry from the history
palette, and paste it into your code.
After you know the proper function for
inserting a slice, you can easily mold
it to suit your needs. By holding down
the Shift key, you can select multiple
History palette entries and copy them
to the Clipboard. This is a great way
to start creating a new command or
exploring how to reproduce tasks in
your commands.

Troubleshooting Your
Command
	 One thing that Fireworks lacks is a
decent error-reporting mechanism for
testing commands. Instead, a script error
simply generates the very uninformative
message, “Can not run the script. An error
occurred.” After looking over your code to
make sure there are no syntax errors, you
have to start troubleshooting. Here are
a few tips to help you troubleshoot your
code.

Commenting
	 Start by looking at unfamiliar func-
tions and objects. Comment out suspect-
ed errors with the block comment tags
(/* */) or single-line dual forward slashes
(//) and then run the command again. If
you find the error, the command should
execute without any error message. If not,
keep trying.

Revisting the Alert Function
	 Use the alert() function on certain
variables to make sure they are returning
what you expect. This method isn’t always
reliable by iteself, however, because
alert() won’t work if the code error still
persists. But you can use it in conjunction
with the commenting route just men-
tioned to find out exactly what is going
wrong.

38 • mxdj.com 12 • 2005

Fireworks Command
Prompt
	 Senocular of senocular.com has
created an amazing third-party tool
called Fireworks Command Prompt
that can help you troubleshoot errors.
This Fireworks extension returns data
from JavaScript code while inside the
Fireworks environment. This is a help-
ful learning tool, too, because Fireworks
contains some pretty complex object
structures that take awhile to get used to.
	 Fireworks Command Prompt is great
for testing if you need to make sure you
are accessing properties correctly. Typing
something like fw.selection[0].pathAttrib-
utes in the upper text box and executing
it (pressing Control+Enter) returns the
pathAttributes object of the selection
for you to examine in the lower text box.
This is often a much better solution than
using the alert() function because you
can isolate code without making a new
command or worrying about unrelated
errors stopping the alert() function from
executing.
	 After you find the error, you can refer-
ence the API documentation to see what
went wrong and how to correct it.

Packaging and Distributing
Your Command
	 The best way to distribute commands
is with an .mxp (Macromedia Extension
Package) file that you can easily install
and uninstall using the Macromedia
Extension Manager. Not only does the
.mxp file provide a nice little package that
is easy to download and organize, it also
ensures that the commands are installed
correctly without the user having to work
manually with .jsf files.

Setting up the Extension
	 You will find a file called Blank.mxi
in the C:\Program Files\Macromedia\
Extension Manager\Samples\Fireworks
folder. You can use this sample XML
file as a general guide for creating your
.mxi file—which is what the Extension
Manager uses to compile an .mxp file.
	 Make a copy of the Blank.mxi file and
save it to the same folder as the Fireworks
commands you want to package. After
that you can open the file with your text
editor and start to fill in the blanks. Most
attributes should be self-explanatory;
Macromedia has also provided some

comments to help you out. Read the
Macromedia Extension Information File
Format document if you need more spe-
cific information or help with XML.
	 The most important part of the .mxi
file is the <files> tree. This is where you
define the command files to include as
well as their destination upon installation.
You can use as many <file /> nodes as
you need, using one for each .jsf file you
want to include. A sample <file> tree that
packages three commands would look
something like this:

<files>

 <file name=“Command1.jsf”

destination=“$fireworks/configuration/

commands/” />

 <file name=“Command2.jsf”

destination=“$fireworks/configuration/

commands/” />

 <file name=“Command3.jsf”

destination=“$fireworks/configuration/

commands/” />

</files>

	 For additional references, see Sample.
mxi included in the sample files for the
article. It is set up to generate an .mxp
extension containing the sample scripts,
which are also provided.

Packaging the Extension
	 After you finish editing the .mxi file,
open the Macromedia Extension Manager
and choose File > Package Extension.
When the browse dialog box appears,
find your .mxi file and open it. Another
dialog box asks where you want to save
the generated .mxp file. Choose an out-
put folder and a name for your extension,
and click Save. Now your .mxp file is
ready for you to distribute or submit to
the Macromedia Exchange!
Using Third-Party Tools
	 If you have trouble creating your own
packages, there are a couple tools that
can help you with the packaging process.
MXI File Creator from Muzak (www.muza-
kdeezign.com/mxi_creator/download.
asp) and MXI Wizard (www.linecraft.com/
products.php) from Alex July are both
free applications that provide a GUI for
creating your .mxi files. The previous sec-
tion, “Packaging the Extension,” explains
how to finish the process once you create
the .mxi file.

Where to Go from Here
	 Writing commands for Fireworks
can be fun and rewarding. Even very
simple commands can make working
with Fireworks easier and more produc-
tive than before. Now that you know all
the essential parts of creating a com-
mand, you can start writing your own.
What parts of Fireworks do you want
to extend? The possibilities are end-
less, and creating .jsf commands is only
the tip of the iceberg. Commands are
not the only way to extend Fireworks.
Building more advanced extensions
that require unique user input can be
produced using Macromedia Flash in
conjunction with the Fireworks API.
You’ll need to have a good understand-
ing of the Fireworks API before you can
start making Flash panel extensions,
though. You can also use custom com-
mands while batch-processing images
if you want more control over the pro-
cess. Here is a list of links to help you
on your path to extending Fireworks,
commands, and beyond:
• 	 Extending Fireworks by Kleanthis

Economou (good general guide that
covers all the different ways to extend
Fireworks)

• 	 10 Minutes with Flash: Creating a
Custom Panel by Robert Hoekman
(page that guides you through the cre-
ation of a simple Flash panel)

• 	 Creating Macromedia Fireworks Auto
Shapes by Senocular (excellent guide
to creating Auto Shape objects)

• 	 Senocular.com Fireworks Extensions
(many examples and quality exten-
sions)

• 	 John Dunning Fireworks Extensions
(some more great commands just wait-
ing to be studied!)

This article originally appeared in the

Macromedia Developer Center, www.mac-

romedia.com/devnet/fireworks/articles/

extending_fireworks.html

Dustin DuPree currently attends

Milwaukee Area Technical College in

Milwaukee, WI, studying visual commu-

nications/multimedia. He also freelances

as a web developer and designer. His

interests include Flash, Fireworks, pro-

gramming, design, photography, playing

guitar, computer gaming, film, politics, and

reading. www.dujodu.com

12 • 2005 mxdj.com • 39

n the more modern day ColdFusion
Development, we tend to rely heav-
ily on various Design Patterns to

automate or “template” our daily coding
chores. The patterns most frequently
touched on are the Data Access Objects
(DAO), DataGateway (DG) and VO (Value
Object) – or – Bean (VO with setter/getter
routines).
	 I’ve often used them, but can’t
but help get the feeling that they are
probably not suited for the ColdFusion
Development world as to me; their rea-
sons for being used aren’t valid enough
to warrant using them blindly.
	 I mean, why Use a DAO?
	 I’ll attack DAOs first, as these are one
of the core primitives found in most
frameworks.
	 The concept of a DAO is as most
already know, to allow the four key
actions to take place (CREATE, UPDATE,
DELETE, READ). In doing this, along
the way we are supposed to accept
“arguments” of each specific type (i.e.,
CustomerID is Numeric?).
	 If that succeeds, the logic to perform

one of the above actions commences,
and as a result we have a success result.
	 Yet, what are we really achieving by
having a DAO in place? In that is it about
strict typed variables or is it about hous-
ing logic inside a CFC for safekeeping.
At the very least that’s all we are really
doing is preventing data that has the
wrong type, being inserted into a data-
base or xml packet.
	 What if we were to say, use an XML
Schema to dictate this?
	 In that using a “TableAdapter” object,
we feed in arguments or serialized object,
which the TableAdapter dissects, vali-
dates and allows passing otherwise it
throws an exception.
	 Immediately one thing springs to
mind, in that it breaks encapsulation of
knowing what variables are passed in
and out of an object, in that they become
“unknown.”
	 Which is true, how are we to know
that CustomerID is String or Numeric?
	 We, the developer would look this up
under the various documentation tools
out there such as CFCDoc, which tells us

exactly what’s coming in and out (i.e.,
how to implement).
	 Yet, are we not getting in danger of
coupling our entire business logic with
say our database? What would happen
if down the road we change CustomerID
from Numeric to String (i.e., AutoNumber
gets replaced with UUID) what then? How
do we adjust our rules and policies to
cope?
	 We could make a ruling, which sim-
ply states that all “ID” fields are “Strings”
regardless, and only when they get
tucked away inside our nominated data-
base, that actual type conversion kicks
in. Yeah, that’d work but where does that
rule end?
	 This is probably a problem used in
most other languages, and there are
other ways to overcome this (i.e., over-
loading a method for one) – yet – we are
in ColdFusion, not one of these languag-
es.
	 This line of reasoning is the founda-
tion of why I disliked in many ways the
concept of DAOs as they are “too” specific
in terms of data typing. It’s too easy to let

Validation of Using DAO,
DG, and VO

ColdFusion development
by scott barnes

blog

i

“The concept of a DAO is
as most already know, to
allow the four key actions

to take place”

40 • mxdj.com 12 • 2005

the compiler take care of the “rulings” on
what type of variable should be sent to
the view.
	 How about an alternative solution? In
that what if we put together an object,
which we could ask should we need to
know what type of variable it is?
	 In that, what if an object called
“DataTable” existed, and inside that we
had another object (composition) called
“DataRow,” which essentially we ask to
know what “type” a column is.
	 This concept is loosely borrowed form
Windows .NET 2.0’s “DataSets.”
	 Essentially all your “Database” activi-
ties are stored inside an XML Schema,
which essentially defines how and where
data gets stored and what “type” they are
expected to be stored in.
	 Furthermore, it’s not limited to
“Databases.” It’s also used for “Files” (XML,
CSV, MS Access etc.).
	 The point is this that by hard cod-
ing our persistence storage via DAO, we
are really shifting our approach in terms
of defining the rules required to be in
place before data is persisted. If these
rules change, it can be an achievement
unto itself to go through code and adjust
properties/arguments to suite.
	 Then there is the risk of having a
mutipersist-based application, which
results in duplication of code in the way
of DAO just because there are different
types for each persistence technology
(MySQL versus Oracle, etc.).
	 Its hard post to swallow, I do admit that
as every bone in your OOP bodies would
be fighting tooth and nail that this is totally
against the OOP grain, which I do agree,
except we are in “ColdFusion” – a point
that I cannot stress enough. ColdFusion
isn’t sophisticated enough to cope with
the rulings of its foundation (J2EE) unless

you introduce specific Java hacks. If you
introduce JAVA into the equation, then yes
we are in a whole new discussion, but most
don’t use JAVA as their buffer between
ColdFusion and a Database.
	 This brings me to my original ques-
tion, why use a DAO? Same question
goes for a DG, why Use them?
	 In most cases, what’s the difference
between a “GetPersonByEmail” and
“GetPersonByID” and how would you
store that principal concept in a DG com-
ponent? Smart answer would probably
be two separate queries, with two sepa-
rate “WHERE” statements in SQL terms.
	 Yet, what happens if we were to drop
a field from the equation or better yet,
introduce one?
	 Those of you who have used DGs
and DAOs in large applications will know
what I’m talking about, in that it’s “a lot of
work” to get all those arguments in place
throughout the code base.
	 To me, there is an alternative and I’m
currently hacking away at it. It simply
involves XML to describe how my persis-
tence gets stored and what constraints
are in place should they arise are declared
via XML.
	 A Value Object though is a hard one,
because they really only serve an “emu-
lated” approach, in that the CFPROPERTY
tag really a has purpose other than to
describe what potentially the variables
inside a CFC will be – yet – they don’t
enforce such rulings.
	 Nope, to me ColdFusion is great, but
it’s not advanced enough to warrant the
patterns such as DAO and DG.
	 How’s that sit with you?

This blog is reprinted with the author’s per-

mission and appeared originally on www.

mossyblog.com/archives/553.cfm.

Advertising Index

Advertiser index is provided as an additional service to our readers. Publisher does not assume any
liability for ommissions and/or misprints in this listing since this listing is not part of any insertion order.

“Its hard post to swallow, I do admit
that as every bone in your OOP bodies
would be fighting tooth and nail that
this is totally against the OOP grain”

	 Advertiser	 URL	 Phone	 Page

	 ActivePDF	 www.activepdf.com	 866-468-6733	 21

	 CFDynamics	 www.cfdynamics.com	 866-233-9626	 17

	 Community MX	 www.communitymx.com		 25

	 Flashforward	 www.flashforwardconference.com		 15

	 InterAKT	 www.interAKTonline.com/macromedia	 4031 401.68.19	 3

	 Intermedia	 www.intermedia.net	 888-379-7729	 6

	 Macromedia	 www.macromedia.com/go/8_studio8	 415-252-2000	 52

	 Metaliq	 www.metaliq.com	 415-642-3332	 27

	 Savvy	 www.besavvy.com	 866-870-6358	 21

	Seapine Software	 www.seapine.com/mxww	 888-683-6456	 5

	 Stream57	 www.stream57.com	 212-909-2550x1012	 11

	 Vitalstream	 www.vitalstream.com	 800-254-7554	 2

	WebAppCaberet	 www.webappcaberet.com/jdj.jsp	 1-866-256-7973	 51

12 • 2005 mxdj.com • 41

ave you ever worked on an
e-learning project, only to find
that you need to alter some of

the screen action you have captured?
	 In projects I have completed recently,
I found myself in this exact situation. Had
I not discovered Macromedia Captivate,
I would have had no choice but to either
re-record a number of screens or the
entire demonstration or simulation again
– both of which would have been an
extremely time-consuming affair.
	 In this article I show how you can
update your Captivate project files using
an external image editor and insert new
image files into your Captivate content.
I also explain the way Captivate handles
mouse movements, which is crucial when
performing these tasks.
	 For the last seven years, I spent the
majority of my time creating video-
based tutorials for VTC (Virtual Training
Company) online and on CD. I’ve also
created tutorials for Macromedia,
Adobe Systems Inc., and the lead-
ing Macromedia extension developer,
WebAssist. Historically I’ve always used
an AVI recording tool to create my dem-
onstrations. One of the problems that
plagued me over the years, however, is
how to alter the recorded screens.
	 Below are some examples of when
I have found it necessary recapture a
screen area:

• 	 The recording application crashes
while recording your screen action.

• 	 Artifacts are present on certain frames
in your movie.

• 	 An object is present on a screen that
shouldn’t be there.

• 	 The version of the application you are
recording is still in development. You
have created the movies and have sent
them to the client for approval, only
to find that there is a new feature that
needs to be included, such as a new
entry in a pop-up menu.

• 	 You have an icon somewhere on the
screen that needs to be removed, such
as another vendor software applica-
tion.

• 	 The version number of the program
has been updated and you need
to change it or remove the version
number altogether in the demonstra-
tion.

• 	 You have typed some text on the
screen, only to find that you have
spelled a word or phrase incorrectly.

	 Attempting to change demonstra-
tions using an AVI recording tool can be
both a time-consuming and complex
task. Most of the time this requires that
you record the whole demonstration
again. Even if you decide to try to record
just the screens that need to be amend-
ed, you may still encounter mouse posi-

tion issues, which you may not be able to
resolve successfully.
	 Why is this such as big deal? The main
reason that editing demonstrations cre-
ated using an AVI recording tool can be
an arduous task is the way it captures
your screens. Video files created using an
AVI recording application are made up of
many still images combined sequentially
into one file. With video files, each screen
with mouse action appears at a number
of frames per second (typically a frame
rate of between 5 and 10 frames per sec-
ond), thus creating the illusion of move-
ment.
	 Video files use a delicate balance of
key and delta frames. Key frames contain
all the information that is required to
display the frame. Delta frames contain
only what has changed from the previous
frame. Remember that the more move-
ment there is in a video file, the more
area of the screen is altered, which results
in larger delta frames and, therefore, a
much larger resulting file size.
	 Some AVI recording tools give you the
ability to overlay new graphics into your
movies. However, because the mouse
pointer has to be captured when the
screen area is recorded, inserting a new
graphic image will typically result in the
pointer appearing behind the inserted
image, so you are still left having to
reshoot your movies!

Using Captivate to
Retouch Images

Recorded demos and simulations
by mark fletcher

retouch

h

“Attempting to change
demonstrations using an AVI
recording tool can be both a

time-consuming and complex task”
42 • mxdj.com 12 • 2005

Capturing Screens Using
Macromedia Captivate
	 Macromedia Captivate uses a com-
pletely different approach. In general,
when capturing a screen area, Captivate
takes a series of static screen shots. This
means that most of the time you don’t
have to worry about capturing a screen
area again. But what about the mouse
pointer? Surely if Captivate takes static
screen shots, it must include the pointer
on each screen shot it takes, right?
	 Actually, no. Captivate does not
include the mouse pointer when it takes
a screen shot. Instead, during capture,
only the position of the mouse pointer
(among other things) is stored. Only after
you have finished capturing your screens
does Captivate add a fully editable mouse
pointer and curved motion path to your
Captivate project file. Captivate gives you
an incredibly flexible working environ-
ment.

Editing Screens in Captivate
	 There are two ways you can make
changes to the screens that make up your
Captivate project files:
• 	 Copy a background image and

edit it in an image editor, such as
Macromedia Fireworks MX 2004

• 	 Overlay a new graphic file on top of
the portion of the screen you wish to
alter

Retouching Captivate
Background Images in an
External Image Editor
	 Being able to edit each of the
background images that make up your
Captivate project files gives you an
incredibly versatile working environment.
For example, one of the projects I just fin-
ished involved creating a series of interac-
tive simulated tasks for the e-commerce
software application WA eCart developed
by WebAssist. Having created a Captivate
project demonstrating how to install the

software, I received an e-mail requesting
that one of the screens should be altered
because it displayed the software version
number, as shown in Figure 1.

Because Captivate enables you to copy
the background image of a slide, altering
a screen is incredibly simple:
1.	 Select the slide you wish to edit.
		 (Optional steps)
	 	Because you cannot undo pasting an

image background in Captivate, you
may also want to do the following:
a 	 Select Slide > Duplicate Slide3.
b 	Select the original slide and choose

Slide > Hide Slide.

2 	 Select Edit > Copy Background for your
duplicated slide.

3 	 Switch to an image editor such as
Macromedia Fireworks MX 2004.

4 	 Select File > New in your image editor
and leave the default values.

5 	 Select Edit > Paste.
6 	 Change the image as you deem neces-

sary.
7 	 Save the file.
8 	 Select the entire image and choose

Edit > Copy. (If you’re in Fireworks,
make sure you’ve selected the Pointer
tool.)

9 	 Switch back to Captivate.
10 	Select Edit > Paste as Background.
11 	Save the Captivate file.

	 Using this copying slide background
technique, I was able to completely
remove all traces of “WA eCart 2.1.0” (see
Figure 2).

Inserting New Images into
Captivate Projects
	 As well as being able to alter the
background image of each of your slides,
Captivate also enables you to overlay a
new image over a certain region of your
captured screen area.
	 Again, while working on the WA

eCart project, the day the software and
interactive simulations were going to
be launched, I received another e-mail
telling me that, at the last minute, a
new feature (an e-mail friendly cart)
had been added to the application
which needed to be somehow incorpo-
rated into one of the existing tutorials.
Figure 3 shows what the original screen
looked like.
	 To resolve this issue, I simply took a
screen shot of the new pop-up menu and
placed this over the top of the existing
menu. You can use a screen shot tool or
simply Print Screen and crop the image
(using an image editor such as Fireworks)
to simply display the change. Once I was
happy with the way it looked on all the
relevant slides, I incorporated (merged) it
into the slide background. See the result
in Figure 4.
	 To insert a new image into a Captivate
project, follow these steps:
1. In Captivate, select the slide into which

you wish to insert the image

fi
g

u
re

 1
fi

g
u

re
 2

“Macromedia Captivate uses a completely
different approach. In general, when
capturing a screen area, Captivate takes
a series of static screen shots”

12 • 2005 mxdj.com • 43

2. Select Insert > Image
3. Browse to select the image you wish

to insert

	 Note: All image file formats (apart
from JPEG and GIF) are automatically
converted to BMP when inserted into a
Captivate project. JPEG and GIF are also
converted to BMP if the image needs to
be cropped or resized.

4. From the Image dialog box (see Figure
5), you can set the image properties.
The dialog box consists of three tabs:
• 	 Image lets you change the appear-

ance of the image
• 	 Options enables you to set timing

and transition effects for the image
• 	 Audio lets you add audio to an

image or edit audio that is already
associated with an image

5. Insert and position the image in the
desired location on each slide you

want to amend.
6. Preview the movie.

Merging Objects into a Slide
	 Merging images into the slide back-
ground can be very useful, especially
when working with a large image. To do
this, use the following steps:
1 	 Select the image object that you wish

to permanently become a part of the
background.

2 	 Select Edit > Merge into Background. A
warning appears, stating that merging
cannot be undone.

3 	 Click Yes to confirm the merge.

Editing Slides That Contain
Mouse Movement
	 So far, all the examples you have
seen consist of screens that don’t
include any mouse movement.
Attempting to edit movies that include
a mouse pointer using a traditional
screen capture tool is probably one of

the most complex tasks you are likely to
encounter.
	 In this section you will see how
Captivate deals with this troublesome
issue and the problems that result when
attempting to record a demonstration
using a screen-capture tool such as
Camtasia Studio 3.0.
	 Consider the following scenario: You
create a demonstration that includes
both mouse movement and a mouse
click to show a pop-up menu. You then
find that there are a number of items
present (in this case, the FlashPaper tool
bar in a Microsoft Word document) that
you must remove from the project.
	 In this test case, I recorded a project in
both Captivate and Camtasia Studio 3.0
from TechSmith. The aim of this demon-
stration is for you to learn how to apply a
heading style to a block of selected text,
using the Style menu in Word:
1. Select a block of text in a document
2. Choose a heading style from the Style

fi
g

u
re

 3

44 • mxdj.com 12 • 2005

 © 2005 WEB SERVICES EDGE. ALL RIGHTS RESERVED

menu
3. Save the document

	 Remove the FlashPaper tool bar by
inserting a new graphic. Because the
demonstration took less than one minute
to capture, the task should be completed
in less than two minutes’ time.

Findings with Camtasia
Studio 3.0
	 In Camtasia Studio 3.0 I was able
to insert a new graphic image using a
feature called custom callouts. However,
this meant that I had to insert multiple
custom callouts on the Timeline. This was
time-consuming and became extremely
frustrating because I couldn’t use the
cursor keys to reposition my graphic ele-
ments.
	 With Camtasia Studio 3.0 the process
took over 12 minutes and yet there were
still some instances when the FlashPaper
tool bar was visible. However, a much
bigger problem was when the mouse had
to travel over the newly added graphics.
Because Camtasia is a screen-capture
application that includes the mouse at
capture time, attempting to overlay a new
image results in the mouse pointer travel-
ing behind the image rather than in front
of it, as shown in Figure 6. Because this
made the demonstration look unrealistic,
I would have had no choice but to record
the whole task again.

Findings with Macromedia
Captivate
	 Using Captivate I was able to correct
my project easily by overlaying the new
tool bar image onto each of my slides. In
Captivate the mouse movement is a dif-
ferent layer, so I can choose whether the
mouse travels behind or on top of the
inserted tool bar image. When the mouse
traveled past the new graphic, I had only
to make sure that the image object was
below the mouse object on the Slide
Timeline, as shown in Figure 7.

	 Below are the steps I followed to
remove the FlashPaper tool bar in
Captivate:
1. Select Image > Insert.
2. Reposition the graphic using the cursor

keys, which allows pixel-level precision.
3. Move the graphic so that it is below the

mouse object on the Slide Timeline.

fi
g

u
re

 5

fi
g

u
re

 4

46 • mxdj.com 12 • 2005

4. Select the graphic and show the image
by removing fade in/out effects.

	 Note: The image transition must be set

to None. Otherwise it will be apparent that

a new image has been inserted on top of

the original region of the screen you are

trying to alter.

5. Copy the inserted image.
6. Select the next slide to which you want

to add the image.
7. Select Edit > Paste.

	 Note: When copying an image,

Captivate captures the position of the

graphic. You don’t need to go through the

process of repositioning it again, nor is it

necessary to changes its position on the

Slide Timeline.

8. Repeat Steps 4 and 5 on the desired
slides.

	 Success! Using Captivate I completely
removed all traces of the FlashPaper
tool bar. The whole process took just
over 44 seconds and, most importantly,
the mouse pointer travels in front of the
inserted graphics, as you can see in the
Captivate movie.

Conclusion
	 In this article I covered how you can
create demonstrations and interactive
simulated content, safe in the knowl-
edge that you can change virtually any
screen at any time, even if your screens
include complex mouse movement. With
Macromedia Captivate, having to recap-
ture a screen is finally a thing of the past.

This article originally appeared in the

Macromedia Developer Center, www.mac-

romedia.com/devnet/captivate/articles/

retouch_imgs.html.

Mark Fletcher is one of the most

experienced authors at the Virtual

Training Company, where he spe-

cializes in creating training CDs

and online tutorials on Macromedia

products, such as UltraDev,

Fireworks, HomeSite, Sitespring,

and Dreamweaver, including

Dreamweaver MX Fundamentals,

Dreamweaver MX 2004

Fundamentals, and Dreamweaver MX

Web Applications. Mark also devel-

ops online tutorials for WebAssist.

com, a Dreamweaver and UltraDev

extension developer. www.vtc.com,

mark-fletcher.co.uk

fi
g

u
re

 6

fi
g

u
re

 7

“With
Camtasia
Studio 3.0 the
process
took over 12
minutes and
yet there were
still some
instances
when the
FlashPaper
tool bar was
visible”

12 • 2005 mxdj.com • 47

ince a Rich Internet
Application is not a stateless
client, you typically have a lot

of data in the client, especially when you
load dynamically over time. Often, while
developing Flex applications, you might
need to peek at data structures during
runtime—this is where my utility, the Flex
Trace Panel, comes in handy.

Requirements
	 To make this most of this tutorial, you
need to install the following software and
files:
•	 Flex 1.5
•	 Flex Trace Panel and accompanying

files (which can be found at http://
macromedia.com/devnet/flex/articles/
tracepanel.html)

Prerequisite Knowledge
	 This article assumes that you are
familiar with the basics of Flex.

The Problem
	 When you debug a web application
that uses HTML in the presentation tier,
you typically write debug messages to
the either the standard log file of your
application server or directly into the
HTML output to track the flow of your
application or to inspect data. For Flex-
powered applications you can leverage
the Flex Debugger integrated in Flex
Builder 1.5 to inspect your application.
However, there are situations were you
do not want to run your application
under the debugger or inside Flex Builder
1.5 but directly in the browser. In those
cases you must use the trace() function
or add some sort of sophisticated debug
text area to the application to output
debug messages.
	 While the trace() statement works fine
for simple debugging tasks, one major

drawback of it is that there is no console
window to display the messages. Instead,
you must browse your local machine for
the log file that Flash Player writes to
when executing a trace() statement. This
may not even work at all if you haven’t
installed the Flash Debug Player and con-
figured it to enable file logging. Finally,
to get some sort of real-time logging
experience you must open the log file
with some text editor that automatically
reloads the file after its content change.
	 One other technique is to add a log-
ging console to the application itself.
This may work, but can compromise the
design of your application’s user inter-
face.

Introducing the Flex Trace
Panel
	 To improve the debugging experi-
ence, I wrote a simple but powerful add-
on for your daily Flex development needs:
the Flex Trace Panel. It’s a standalone
application that runs outside the browser
and listens for debug messages sent from
your Flex application. Received messages
display in real time. There are several
features such as different log levels and
nested object introspection that help you
develop and debug your Flex applica-
tion. Technically, the Flex Trace Panel is
a SWF file made with Macromedia Flash
Professional 8, wrapped into a stand-
alone shell by using the third-party tool
Zinc v2.5 by Multimedia Limited.
	 Once you start the Flex Trace Panel, it
creates a new LocalConnection instance
and listens for incoming messages. After
the Flex Trace Panel receives a message,
it writes the data to the output text area.
If the data is complex (such as an object),
the Trace Panel recursively introspects the
structure and prints the hierarchy while
avoiding cyclical references that could

cause the Trace Panel to freeze. In short,
your Flex applications send data to the
Flex Trace Panel by using the Dumper
class, an ActionScript 2.0 class that comes
with the Flex Trace Panel download in the
Requirements section.

Using the Flex Trace Panel
	 To use the Flex Trace Panel, unzip
the downloaded ZIP file to a directory of
your choice. The directory contains an
src and a bin folder, with the Flex Trace
Panelexecutable in the bin Folder. You
may want to copy this file to another
location on your machine.
	 The src folder contains a directory
structure for the Dumper class. Copy the
contents of the src folder to your Flex
server, so that the Dumper class is avail-
able to your Flex application. In general,
place the Dumper class in the class path
of your Flex application. To make the
Dumper class available to all of your Flex
applications (recommended for a testing
or development system) simply copy the
directory structure to the user_classes
directory of your Flex server. With a
default, out-of-the-box Flex 1.5 installa-
tion, this is at:

C:\Program Files\Macromedia\Flex\

jrun4\servers\default\flex\WEB-INF\

flex\user_classes

	 If you only want to use the Dumper
class in a single application, copy the
de.richinternet.utils.* package to the root
of your Flex application. After you install
the source files, it’s time to start the show.
	 Create a new Flex application and add
the following code:

<?xml version=”1.0” encoding=”utf-8”?>

<mx:Application xmlns:mx=”http://www.

macromedia.com/2003/mxml”>

Using the Flex Trace Panel

Developing Flex applications
by dirk eismann

flex

s

48 • mxdj.com 12 • 2005

 <mx:Script>

 <![CDATA[

 import de.richinternet.utils.

Dumper;

 private function sayHello():

Void {

 Dumper.dump(“Hello World!”);

 }

]]>

 </mx:Script>

 <mx:Button label=”Say Hello!”

click=”sayHello()”/>

</mx:Application>

	 Start the Flex Trace Panel and run your
Flex application. When you click the but-
ton, the following message will appear in
the output window.
	 The [INFO] text printed left to the
message indicates the log level of the
message, while (String) tells you the
type of data sent. This is extremely help-
ful when passing complex data such as
Arrays or nested Objects to the Trace
Panel.
	 As mentioned before, you can set up
your applications to send any data type
to the Flex Trace Panel. For example, if
you want to output the content of the
DataProvider attached to the DataGrid
myGrid you simply write:

Dumper.dump(myGrid.dataProvider);

	 The Dumper class provides several
methods to send data with different log
levels to the Trace Panel. This is conve-
nient if you for example want to indicate
whether a certain message is an error
message or just simple information. The
log levels are:
•	 INFO
•	 WARN
•	 ERROR

	 Here’s a listing of all available meth-
ods of the Dumper class:
•	 Dumper.dump(message:Object):Void
	 takes the passed Object (any type) and

routes it to the Flex Trace Panel with
log level INFO

•	 Dumper.info(message:Object):Void
 takes the passed Object (any type) and

routes it to the Flex Trace Panel with
log level INFO

•	 Dumper.warn(message:Object):Void
 takes the passed Object (any type) and

routes it to the Flex Trace Panel with
log level WARN

•	 Dumper.error(message:Object):Void
 takes the passed Object (any type) and

routes it to the Flex Trace Panel with
log level ERROR

	 To distinguish between messages
with different log levels, you can use the
Flex Trace Panel to filter messages on
their log level. By using the Level menu of
the Trace Panel, you can filter all received
messages. Internally, the Flex Trace Panel
uses a message buffer to filter messages
dynamically.
	 To save the content of the output text
field to a text file, click the save icon or
select Save from the File menu. To clear
the text field, select File > Clear or click
the trash can icon.
	 This article explained how you can
use the Flex Trace Panel while you devel-
op Flex applications. As with any other

software, the Flex Trace Panel will keep
evolving. Especially, I’d like to update it so
that it runs with Flex 2 and the new Flex
2 Logging API. Stay tuned on develop-
ments with the Flex Trace Panel category
on my blog.

Dirk Eismann is a software engineer at

the Hannover, Germany–based software

company Herrlich & Ramuschkat where

he develops and implements web-based

applications. Currently he focuses on Flex

application architecture and the integra-

tion of Flex applications into Java and

.NET environments. Dirk has been work-

ing with Flex since it hit the streets and

now fluently speaks ActionScript 2.0 and

MXML. He is also a Macromedia Certified

Instructor for Flex and Flash, and an active

contributor to the Flex community. He

runs richinternet.blog, a blog dedicated

to Flash-powered Internet applications.

www.richinternet.de

fi
g

u
re

 1
fi

g
u

re
 2

50 • mxdj.com 12 • 2005

Copyright © 2005 Macromedia, Inc. All rights reserved. Macromedia, the Macromedia logo, Dreamweaver, Flash, Fireworks, Contribute, and FlashPaper are trademarks or registered trademarks of Macromedia, Inc. in the United States and/or other countries.
Other marks are the properties of their respective owners.

Different people. Different needs. One suite solution.
With the latest versions of Macromedia Dreamweaver®, Flash® Professional,
Fireworks®, Contribute™, and FlashPaper™, the new Studio 8 is quite a catch.
To meet Studio 8 and find all the web design and development tools you
need, visit www.macromedia.com/go/8_studio8.

WEB DEV GURU seeks an Integrated

Software Suite that speaks my language

(XHTML) and won’t cramp my style. Must

play well with XML, CSS and others.

I’m not superficial, but I like a nice code

view. Clutter isn’t cute.

Macromedia ST8 Print Ad

“WEB DEVELOPER”

BLEED SIZE: 8.625” x 11”

TRIM SIZE: 8.375” x 10.75”

LIVE AREA: 7.875” x 10.25”

MXDJ Special Edition mag

